
Real-Time Publish-Subscribe (RTPS)

Wire Protocol Specification

Protocol Version: 1.0

Draft Document Version: 1.17

Product Version: RTPS Wire Protocol Specification
Version 1.0

Published: February 2002

© 2002 by Real-Time Innovations, Inc. All rights reserved.
Printed in U.S.A. First printing.

Trademarks
Real-Time Innovations and RTI are registered trademarks of Real-Time Innovations, Inc.
All other trademarks used in this document are the property of their respective owners.

Copy and Use Restrictions
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-
Time Innovations, Inc. All such copies must contain this notice unaltered.

This document may contain technologies claimed by current or future patents owned by Real-Time
Innovations, Inc.

Draft Disclaimer
This draft contains a subset of the full RTPS protocol. The contents of this draft are subject to change
without notice and are provided �as is� without warranty of any kind. The full and complete specification is
scheduled for release to IDA Group members by the end of 2001. In addition, the protocol will be released
as an Internet Engineering Task Force (IETF) Informational Request for Comment (RFC). If you would like
a copy of the complete specification when it is released, please send an e-mail to info@rti.com and specify
in the subject and body that you would like a copy of the RTPS Protocol Specification and provide a means
for us to contact you. We will notify you when it is available.

Contact Information
Real-Time Innovations, Inc.
155A Moffett Park Drive
Sunnyvale, CA 94089
Phone: 408-734-4200
Fax: 408-734-5009
Email: support@rti.com
Web Site: http://www.rti.com

Contents

Figures ... vii

Tables .. ix

1 Basic Concepts ... 1-1

1.1 Introduction... 1-1
1.2 The RTPS Object Model... 1-2
1.3 The Basic RTPS Transport Interface... 1-3

1.3.1 The Basic Logical Messages .. 1-3
1.3.2 Underlying Wire Representation ... 1-4

1.4 Notational Conventions .. 1-4
1.4.1 Name Space... 1-4
1.4.2 Representation of Structures... 1-4
1.4.3 Representation of Bits and Bytes.. 1-4

2 Structure Definitions .. 2-1

2.1 Referring to Objects: the GUID .. 2-1
2.1.1 The GUIDs of Applications... 2-2
2.1.2 The GUIDs of the Services within an Application .. 2-2

2.2 Building Blocks of RTPS Messages .. 2-3
2.2.1 VendorId .. 2-3
2.2.2 ProtocolVersion... 2-3
2.2.3 SequenceNumber ... 2-3
2.2.4 Bitmap.. 2-4
2.2.5 NtpTime... 2-5
2.2.6 IPAddress... 2-5
2.2.7 Port ... 2-5

3 RTPS Message Format .. 3-1

3.1 Overall Structure of RTPS Messages ... 3-1
3.2 Submessage Structure.. 3-1

3.2.1 submessageId in the Submessage Header.. 3-1
3.2.2 Flags in the Submessage Header.. 3-2
3.2.3 octetsToNextHeader in the Submessage Header... 3-2

3.3 How to Interpret a Message.. 3-2
3.3.1 Rules Followed By A Message Receiver ... 3-3

3.4 Header.. 3-3
3.4.1 Format .. 3-3
3.4.2 Validity... 3-3
3.4.3 Change in State of the Receiver.. 3-4
3.4.4 Logical Interpretation .. 3-4

3.5 ACK.. 3-4
3.5.1 Submessage Format ... 3-4
3.5.2 Validity... 3-4
3.5.3 Change in State of the Receiver.. 3-4
3.5.4 Logical Interpretation .. 3-5
iii

3.6 GAP...3-5
3.6.1 Submessage Format ..3-5
3.6.2 Validity ...3-6
3.6.3 Change in State of the Receiver ..3-6
3.6.4 Logical Interpretation...3-6
3.6.5 Example..3-7

3.7 HEARTBEAT ...3-7
3.7.1 Submessage Format ..3-7
3.7.2 Validity ...3-7
3.7.3 Change in State of the Receiver ..3-7
3.7.4 Logical Interpretation...3-8

3.8 INFO_DST..3-8
3.8.1 Submessage Format ..3-8
3.8.2 Validity ...3-8
3.8.3 Change In State Of The Interpreter ..3-9
3.8.4 Logical Interpretation...3-9

3.9 INFO_REPLY ...3-9
3.9.1 Submessage Format ..3-9
3.9.2 Validity ...3-9
3.9.3 Change in State of the Receiver ..3-10
3.9.4 Logical Interpretation...3-10

3.10 INFO_SRC..3-10
3.10.1 Submessage Format ..3-10
3.10.2 Validity ...3-10
3.10.3 Change in State of the Receiver ..3-10
3.10.4 Logical Interpretation...3-10

3.11 INFO_TS... 3-11
3.11.1 Submessage Format .. 3-11
3.11.2 Validity ... 3-11
3.11.3 Change in State of the Receiver .. 3-11
3.11.4 Logical Interpretation... 3-11

3.12 ISSUE .. 3-11
3.12.1 Submessage Format ..3-12
3.12.2 Validity ...3-12
3.12.3 Change in State of the Receiver ..3-12
3.12.4 Logical Interpretation...3-12

3.13 PAD ...3-13
3.13.1 Submessage Format ..3-13
3.13.2 Validity ...3-13
3.13.3 Change in State of the Receiver ..3-13
3.13.4 Logical Submessage Generated On Reception ...3-13

3.14 VAR ...3-14
3.14.1 Submessage Format ..3-14
3.14.2 Validity ...3-14
3.14.3 Change in State of the Receiver ..3-14
3.14.4 Logical interpretation ...3-15

3.15 Versioning and Extensibility ...3-16
3.15.1 Allowed Extensions Within This Major Version ..3-16
3.15.2 What Cannot Change Within This Major Version..3-16
iv

4 RTPS and UDP/IPv4 ... 4-1

4.1 Concepts .. 4-1
4.1.1 RTPS Messages and the UDP Payload .. 4-1
4.1.2 UDP/IP Destinations... 4-1
4.1.3 Note On Relative Addresses... 4-1

4.2 RTPS Packet Addressing ... 4-1
4.2.1 Well-known Ports ... 4-2
4.2.2 Relevant Attributes of an Application .. 4-2
4.2.3 Manager ... 4-3
4.2.4 Definition of the IPAddressPortList().. 4-3

4.3 Possible Destinations for Specific Submessages .. 4-4
4.3.1 Possible Destinations of an ACK ... 4-4
4.3.2 Possible Destinations of a GAP .. 4-4
4.3.3 Possible Destinations of a HEARTBEAT... 4-4
4.3.4 Possible Destinations of an ISSUE ... 4-4
4.3.5 Possible Destinations of a VAR .. 4-4

5 Attributes of Objects and Metatraffic ... 5-1

5.1 Concept .. 5-1
5.2 Wire Format of the ParameterSequence.. 5-3
5.3 ParameterID Definitions ... 5-4
5.4 Reserved Objects .. 5-5

5.4.1 Description .. 5-5
5.4.2 Overview: Special Objects in a ManagedApplication....................................... 5-6
5.4.3 Overview: Special Objects in a Manager .. 5-7
5.4.4 Reserved ObjectIds... 5-7

5.5 Examples.. 5-8
5.5.1 Examples of GUIDs.. 5-8
5.5.2 Examples of ParameterSequences.. 5-9

6 Publish-Subscribe Protocol .. 6-1

6.1 Publication and Subscription Objects.. 6-1
6.1.1 Object Model ... 6-1
6.1.2 Publication Behavior Towards Best-Effort Subscriptions................................. 6-3
6.1.3 Publication Behavior Towards Strict-Reliable Subscriptions........................... 6-4

6.2 Representation of User Data ... 6-5
6.2.1 Format of Data in UserData.. 6-6
6.2.2 TypeName ... 6-7
6.2.3 TypeChecksum ... 6-7
6.2.4 PathName.. 6-7

7 CST Protocol .. 7-1

7.1 Object Model ... 7-1
7.2 Structure of the Composite State (CS) ... 7-2
7.3 CSTWriter .. 7-2

7.3.1 Overview ... 7-2
7.3.2 CSTWriter Behavior ... 7-2
7.3.3 CSChangeForReader Behavior... 7-3
v

7.3.4 CSTRemoteReader Behavior ...7-4
7.3.5 Timing Parameters on the CSTWriter side ..7-5

7.4 CSTReader..7-6
7.4.1 Overview..7-6
7.4.2 CSTReader Behavior...7-6
7.4.3 CSChangeFromWriter Behavior ...7-7
7.4.4 CSTRemoteWriter Behavior ..7-7
7.4.5 Timing Parameters on the CSTReader side...7-8

7.5 Overview of Messages used by CST ..7-8
7.5.1 ACKs—Sent from a CSTReader to a CSTWriter...7-8
7.5.2 HEARTBEATs—Sent from a CSTWriter to a CSTReader..................................7-9
7.5.3 GAPs—Sent from a CSTWriter to a CSTReader...7-9
7.5.4 VARs—Sent from a CSTWriter to a CSTReader ...7-9

8 Discovery with the CST Protocol ... 8-1

8.1 Overview..8-1
8.2 Managers Keep Track of Their Managees ...8-2
8.3 Inter-Manager Protocol ..8-2
8.4 The Registration Protocol ..8-3
8.5 The Manager-Discovery Protocol ...8-4
8.6 The Application Discovery Protocol ..8-4
8.7 Services Discovery Protocol ..8-5

A CDR for RTPS .. A-1

A.1 Primitive Types...A-1
A.1.1 Semantics...A-1
A.1.2 Encoding..A-1
A.1.3 octet ..A-2
A.1.4 boolean ..A-2
A.1.5 unsigned short..A-2
A.1.6 short ...A-2
A.1.7 unsigned long ...A-2
A.1.8 long...A-2
A.1.9 unsigned long long ..A-3
A.1.10 long long..A-3
A.1.11 float ..A-3
A.1.12 double ..A-3
A.1.13 char...A-3
A.1.14 wchar ...A-3

A.2 Constructed Types ...A-4
A.2.1 Alignment ...A-4
A.2.2 Identifiers ..A-4
A.2.3 List of constructed types ...A-4
A.2.4 Struct ..A-4
A.2.5 Enumeration ...A-4
A.2.6 Sequence..A-5
A.2.7 Array..A-5
A.2.8 String..A-5
A.2.9 Wstring ..A-5
vi

Figures

Figure 1.1 Object Model ... 1-2
Figure 5.1 Object Attributes ... 5-2
Figure 5.2 Special Objects of a ManagedApplication .. 5-6
Figure 5.3 Special Objects of a Manager .. 5-7
Figure 7.1 CST Protocol Object Model ... 7-1
Figure 7.2 State of Attribute cS for CSChangeForReader.. 7-3
Figure 7.3 CSTRemoteReader.. 7-5
Figure 8.1 Relationship between Applications and Managers ... 8-1
vii

viii

Tables

Table 2.1 objKind octet of an objectId...2-2
Table 2.2 Vendor IDs ... 2-3
Table 2.3 Example of bitmap: meaning of “1234/12:00110” ... 2-4
Table 3.1 Interpretation of ACK Submessage.. 3-5
Table 3.2 Interpretation of GAP Submessage.. 3-6
Table 3.3 Interpretation of HEARTBEAT Submessage .. 3-8
Table 3.4 Interpretation of ISSUE Submessage ... 3-12
Table 3.5 Interpretation of VAR Submessage .. 3-15
Table 5.1 ManagedApplication Attributes .. 5-1
Table 5.2 Manager Submessage attributes (in addition to Table 5.1)... 5-1
Table 5.3 Publication attributes ... 5-2
Table 5.4 ParameterID Values.. 5-4
Table 5.5 Predefined instanceIds... 5-8
Table 5.6 Interpretation of Sample GUIDs... 5-9
Table 5.7 Example VAR Submessage.. 5-9
Table 5.8 Example Manager Attributes.. 5-10
Table 6.1 ISSUE generated by an RTPSPublication Publication ... 6-4
Table 6.2 ACK Sent By a Subscription in Response to a HEARTBEAT Sent By a Matching Publication6-

6
Table 6.3 HEARTBEAT Sent By a Publication to a Matching Strict-Reliable Subscription 6-6
ix

x

1.1 Introduction
Chapter 1

Basic Concepts

1.1 Introduction
With the explosion of the Internet, the TCP/UDP/IP protocol suite has become the underlying
framework upon which all Internet-based communications are built. Their success attests to the
generality and power of these protocols. However, these transport-level protocols are too low level to
be used directly by any but the simplest applications. Consequently, higher-level protocols such as
HTTP, FTP, DHCP, DCE, RTP, DCOM, and CORBA have emerged. Each of these protocols fills a
niche, providing well-tuned functionality for specific purposes or application domains.

In network communications, as in many fields of engineering, it is a fact that “one size does not fit
all.” Engineering design is about making the right set of trade-offs, and these trade-offs must balance
conflicting requirements such as generality, ease of use, richness of features, performance, memory
size and usage, scalability, determinism, and robustness. These trade-offs must be made in light of
the types of information flow (e.g. periodic, one-to-many, request-reply, events), and the constraints
imposed by the application and execution platforms.

The Real-Time Publish-Subscribe (RTPS) Wire Protocol provides two main communication models:
the publish-subscribe protocol, which transfers data from publishers to subscribers; and the
Composite State Transfer (CST) protocol, which transfers state.

The RTPS protocol is designed to run over an unreliable transport such as UDP/IP. The broad goals
for the RTPS protocol design are:

❏ Plug and play connectivity so that new applications and services are automatically
discovered and applications can join and leave the network at any time without the need for
reconfiguration.

❏ Performance and quality-of-service properties to enable best-effort and reliable publish-
subscribe communications for real-time applications over standard IP networks.

❏ Configurability to allow balancing the requirements for reliability and timeliness for each
data delivery.

❏ Modularity to allow simple devices to implement a subset and still participate in the network.

❏ Scalability to enable systems to potentially scale to very large networks.

❏ Extensibility to allow the protocol to be extended and enhanced with new services without
breaking backwards compatibility and interoperability.

❏ Fault tolerance to allow the creation of networks without single points of failure.

❏ Type-safety to prevent application programming errors from compromising the operation of
remote nodes.

This specification defines the message formats, interpretation, and usage scenarios that underlie all
messages exchanged by applications that use the RTPS protocol.
1-1

Chapter 1 Basic Concepts
1.2 The RTPS Object Model
Figure 1.1 shows the object model that underlies the RTPS Protocol.

The RTPS Protocol runs in a Network of Applications. An Application contains local Services
through which the application sends or receives information using the RTPS Protocols. The Services
are either Readers or Writers. Writers provide locally available data (a composite state or a stream of
issues) on the network. Readers obtain this information from the network.

There are two broad classes of Writers: Publications and CSTWriters. A Publication is a Writer that
provides issues to one or more instances of a Subscription using the publish-subscribe protocol and
semantics.

The presence of a Publication in an Application indicates that the Application is willing to publish
issues to matching subscriptions. The attributes of the Publication service object describe the
contents (the topic), the type of the issues, and the quality of the stream of issues that is published on
the Network.

There are two broad classes of Readers: Subscriptions and CSTReaders. A Subscription is a Reader
that receives issues from one or more instances of Publication, using the publish-subscribe service.

The presence of a Subscription indicates that the Application wants to receive issues from
Publications for a specific topic on the Network. The Subscription has attributes that identify the

Figure 1.1 Object Model
1-2

1.3 The Basic RTPS Transport Interface
contents (the topic) of the data, the type of the issues and the quality with which it wants to receive the
stream of issues.

The CSTWriter and CSTReader are the equivalent of the Publication and Subscription,
respectively, but are used solely for the state-synchronization protocol and are provided so that
applications have a means to exchange state information about each other.

Every Reader (CSTReader or Subscription) and Writer (CSTWriter or Publication) is part of an
Application. The Application and its Readers and Writers are local, which is indicated in Figure 1.1
by the keyword "local" on the relationship between an Application and its Services.

There are two kinds of Applications: Managers and ManagedApplications. A Manager is a special
Application that helps applications automatically discover each other on the Network. A
ManagedApplication is an Application that is managed by one or more Managers. Every
ManagedApplication is managed by at least one Manager.

The protocol provides two types of functionality:

❏ Data Distribution: The RTPS protocol specifies the message formats and communication
protocols that support the publish-subscribe protocol (to send issues from Publications to
Subscriptions) and the Composite State Transfer (CST) protocol (to transfer state from a
CSTWriter to a CSTReader) at various service levels.

❏ Administration: The RTPS protocol defines a specific use of the CST protocol that enables
Applications to obtain information about the existence and attributes of all the other
Applications and Services on the Network. This metatraffic enables every Application to
obtain a complete picture of all Applications, Managers, Readers and Writers in the
Network. This information allows every Application to send the data to the right locations
and to interpret incoming packets.

1.3 The Basic RTPS Transport Interface
RTPS is designed to run on an unreliable transport mechanism, such as UDP/IP. The protocols
implement reliability in the transfer of issues and state.

RTPS takes advantage of the multicast capabilities of the transport mechanism, where one message
from a sender can reach multiple receivers.

RTPS is designed to promote determinism of the underlying communication mechanism. The
protocol also provides an open trade-off between determinism and reliability.

1.3.1 The Basic Logical Messages

The RTPS protocol uses five logical messages:

❏ ISSUE: Contains the Application’s UserData. ISSUEs are sent by Publications to one or more
Subscriptions.

❏ VAR: Contains information about the attributes of a NetworkObject, which is part of a
composite state. VARs are sent by CSTWriters to CSTReaders.

❏ HEARTBEAT: Describes the information that is available in a Writer. HEARTBEATs are sent
by a Writer (Publication or CSTWriter) to one or more Readers (Subscription or
CSTReader).

❏ GAP: Describes the information that is no longer relevant to Readers.

❏ ACK: Provides information on the state of a Reader to a Writer.
1-3

Chapter 1 Basic Concepts
Each of these logical messages are sent between specific Readers and Writers as follows:

❏ Publication to Subscription(s): ISSUEs and HEARTBEATs

❏ Subscription to a Publication: ACKs

❏ CSTWriter to a CSTReader: VARs, GAPs and HEARTBEATs

❏ CSTReader to a CSTWriter: ACKs

Readers and Writers are both senders and receivers of RTPS Messages. In the protocol, the logical
messages ISSUE, VAR, HEARTBEAT, GAP and ACK can be combined into a single message in
several ways to make efficient use of the underlying communication mechanism. Chapter 3 explains
the format and construction of a Message.

1.3.2 Underlying Wire Representation

RTPS uses the CDR (Common Data Representation) as defined by the Object Management Group
(OMG) to represent all basic data and structures. Appendix A describes CDR and the specific
choices that RTPS made in its usage of CDR.

1.4 Notational Conventions

1.4.1 Name Space

All the definitions in this document are part of the “RTPS” name-space. To facilitate reading and
understanding, the name-space prefix has been left out of the definitions and classes in this
document. For example, an implementation of RTPS will typically provide the service
RTPSPublication or RTPS::Publication; however, in this document we will use the more simple
Publication.

1.4.2 Representation of Structures

The following chapters often define structures, such as:

typedef struct {
 octet[3] instanceId;
 octet appKind;
} AppId;

These definitions use the OMG IDL (Interface Definition Language). When these structures are sent
on the wire, they are encoded using the corresponding CDR representation. Appendix A shows
what standards describe this notation.

1.4.3 Representation of Bits and Bytes

This document often uses the following notation to represent an octet or byte:

+-+-+-+-+-+-+-+-+
|7|6|5|4|3|2|1|0|
+-+-+-+-+-+-+-+-+

In this notation, the leftmost bit (bit 7) is the most significant bit ("MSB") and the rightmost bit (bit 0)
is the least significant bit ("LSB").
1-4

1.4 Notational Conventions
Streams of bytes are ordered per lines of 4 bytes each as follows:

0...2...........7...............15.............23...............31
+-+
| first byte | | | 4th byte |
+-+

 -----------stream------------->>>>

In such representation, the byte that comes first in the stream is on the left. The bit on the extreme left
is the MSB of the first byte; the bit on the extreme right is the LSB of the 4th byte.
1-5

Chapter 1 Basic Concepts
1-6

2.1 Referring to Objects: the GUID
Chapter 2

Structure Definitions

This chapter defines the Globally Unique ID (GUID) used to reference objects in a Network and the
basic structures used in the protocol (to represent bitmaps, sequence numbers, etc.) These structures
will be used in the following chapters where the RTPS Message is defined.

2.1 Referring to Objects: the GUID
The GUID (Globally Unique Id) is a unique reference to an Application or a Service on the Network.

The GUID is built as a 12-octet triplet: <HostId hostId, AppId appId, ObjectId objectId>. The GUID
should be a globally unique reference to one specific NetworkObject within the Network.

The HostId and AppId are defined as follows:

typedef octet[4] HostId;

typedef struct {
 octet[3] instanceId;
 octet appKind;
} AppId;

where appKind is one of the following:

0x01 ManagedApplication
0x02 Manager

An implementation based on this version (1.0) of the protocol will consider anything other than the
above two to be an unknown class.

The unknown hostId and appId are defined as follows:

#define HOSTID_UNKNOWN { 0x00, 0x00, 0x00, 0x00 }
#define APPID_UNKNOWN { 0x00, 0x00, 0x00, 0x00 }
2-1

Chapter 2 Structure Definitions
2.1.1 The GUIDs of Applications

Every Application on the Network has GUID <hostId, appId, OID_APP>, where the constant OID_APP
is defined as follows.

#define OID_APP {0x00,0x00,0x01,0xc1}

The implementation is free to pick the hostId and appId, as long as the last octet of the appId identifies
the appKind and as long as every Application on the Network has a unique GUID.

2.1.2 The GUIDs of the Services within an Application

The Services that are local to the Application with GUID <hostId, appId, OID_APP> have GUID
<hostId, appId, objectId>. The objectId is the unique identification of the NetworkObject relative to
the Application. The objectId also encapsulates what kind of NetworkObject this is, whether the
object is a user-object or a meta-object and whether the instanceId is freely chosen by the middleware
or is a reserved instanceId, which has special meaning to the protocol. One example of a reserved
(protocol defined) objectId is OID_APP, which is used in the GUID of Applications.

The ObjectId structure is defined as follows:

typedef struct {
 octet[3] instanceId;
 octet objKind;
} ObjectId;

#define OBJECTID_UNKNOWN { 0x0, 0x0, 0x0, 0x0 }

For objKind, the two most significant bits indicate whether the object is meta-level or user-level (M-
bit) and whether its instanceId is chosen or reserved (R-bit), respectively.

ObjectId:
0...2...........8...............16.............24...............31
+-+
| instanceId |M|R| |
+---------------+---------------+---------------+---------------+

M=1 The NetworkObject is a meta-object: it can be reached through the meta-ports of the Applica-
tion to which it belongs (see Chapter 4).

R=1 The instanceId is reserved; it has a special meaning to the protocol. Chapter 5 lists all reserved
instanceId’s.

The last six bits of the objectId define the class to which the object belongs (Application, Publica-
tion, Subscription, CSTWriter, or CSTReader). Table 2.1 provides an overview. The meaning of the
message IDs is fixed in this major version (1). New objKinds may be added in higher minor versions
as the RTPS object-model is extended with new classes.

Table 2.1 objKind octet of an objectId

Class of Object
Normal

User-object
Reserved

User-object
Normal

Meta-object
Reserved

Meta-object

unknown 0x00 0x40 0x80 0xc0

Application 0x01 0x41 0x81 0xc1

CSTWriter 0x02 0x42 0x82 0xc2

Publication 0x03 0x43 0x83 0xc3

Subscription 0x04 0x44 0x84 0xc4

CSTReader 0x07 0x47 0x87 0xc7
2-2

2.2 Building Blocks of RTPS Messages
2.2 Building Blocks of RTPS Messages
This section describes the basic structures that are used inside RTPS Messages.

2.2.1 VendorId

This structure identifies the vendor of the middleware implementing the RTPS protocol and allows
this vendor to add specific extensions to the protocol. The vendor ID does not refer to the vendor of
the device or product that contains RTPS middleware.

typedef struct {
 octet major;
 octet minor;
} VendorId;

The currently assigned vendor IDs are listed in Table 2.2.

2.2.2 ProtocolVersion

The following structure describes the protocol version.

typedef struct {
 octet major;
 octet minor;
} ProtocolVersion;

Implementations following this version of the document implement protocol version 1.0 (major = 1,
minor = 0).

#define PROTOCOL_VERSION_1_0 { 0x1, 0x0 }

2.2.3 SequenceNumber

A sequence number, N, is a 64-bit signed integer, that can take values in the range:
-2^63 <= N <= 2^63-1.

On the wire, it is represented using two 32-bit integers as follows:

typedef struct {
 long high;
 unsigned long low;
} SequenceNumber;

Using this structure, the sequence number is: high * 2^32 + low.

The sequence number, 0, and negative sequence numbers are used to indicate special cases:

#define SEQUENCE_NUMBER_NONE 0
#define SEQUENCE_NUMBER_UNKNOWN -1

Table 2.2 Vendor IDs

Major Minor Name

0x00 0x00 VENDOR_ID_UNKNOWN

0x01 0x01 Real-Time Innovations, Inc., CA, USA
2-3

Chapter 2 Structure Definitions
2.2.4 Bitmap

Bitmaps are used as parts of several messages to provide binary information about individual
sequence numbers within a range. The representation of the Bitmap includes the length of the Bit-
map in bits and the first SequenceNumber to which the Bitmap applies.

Bitmap:
0...2...........8...............16.............24...............31
+-+
| |
+ SequenceNumber bitmapBase +
| |
+---------------+---------------+---------------+---------------+
| long numBits |
+---------------+---------------+---------------+---------------+
| long bitmap[0] |
+---------------+---------------+---------------+---------------+
| long bitmap[1] |
+---------------+---------------+---------------+---------------+
| ... |
+---------------+---------------+---------------+---------------+
| long bitmap[M-1] M = (numBits+31)/32 |
+---------------+---------------+---------------+---------------+

Given a Bitmap, bitmap, the boolean value of the bit pertaining to SequenceNumber N, where bit-
mapBase <= N < bitmapBase+numBits is:

bit(N) = bitmap[deltaN/32] & (1 << (31 - deltaN%32))

where

deltaN = N - bitmapBase

The bitmap does not indicate anything about sequence numbers outside of the range
[bitmapBase, bitmapBase+numBits-1].

A valid bitmap must satisfy the following conditions:

❏ bitmapBase >= 1

❏ 0 <= numBits <= 256

❏ there are M=(numBits+31)/32 longs containing the pertinent bits

This document uses the following notation for a specific bitmap:

 bitmapBase/numBits:bitmap

In the bitmap, the bit corresponding to sequence number bitmapBase is on the left. The ending "0" bits
can be represented as one "0".

For example, in bitmap “1234/12:00110”, bitmapBase=1234 and numBits=12. The bits apply as fol-
lows to the sequence numbers:

Table 2.3 Example of bitmap: meaning of “1234/12:00110”

Sequence Bit

1234 0

1235 0

1236 1

1237 1

1238-1245 0
2-4

2.2 Building Blocks of RTPS Messages
2.2.5 NtpTime

Timestamps follow the NTP standard and are represented on the wire as a pair of integers containing
the high- and low-order 32 bits:

typedef struct {
long seconds; // time in seconds
unsigned long fraction; // time in seconds / 2^32

NtpTime;

Time is expressed in seconds using the following formula:

seconds + (fraction / 2^(32))

The RTPS protocol does not require a concept of absolute time.

2.2.6 IPAddress

An IP address is a 4-byte unsigned number:

typedef unsigned long IPAddress

An IP address of zero is an invalid IP address:

#define IPADDRESS_INVALID 0

The mapping between the dot-notation "a.b.c.d" of an IP address and its representation as an
unsigned long is as follows:

IPAddress ipAddress = (((a * 256 + b) * 256) + c) * 256 + d

For example, IP address "127.0.0.1" corresponds to the unsigned long number 2130706433 or
0x7F000001.

2.2.7 Port

A port number is a 4-byte unsigned number:

typedef unsigned long Port

The port number zero is an invalid port-number:

#define PORT_INVALID 0

If a port number represents an IPv4 UDP port, only the range of unsigned short numbers from 0x1 to
0x0000ffff is valid.
2-5

Chapter 2 Structure Definitions
2-6

3.1 Overall Structure of RTPS Messages
Chapter 3

RTPS Message Format

3.1 Overall Structure of RTPS Messages
The overall structure of a Message includes a leading Header followed by a variable number of Sub-
messages. Each Submessage starts aligned on a 32-bit boundary with respect to the start of the Mes-
sage.

Message:
0...2...........7...............15.............23...............31
+-+
| Header |
+-+
| Submessage |
+-+
...
+-+
| Submessage |
+-+

A Message has a well-known length. This length is not sent explicitly by the RTPS protocol but is
part of the underlying transport with which Messages are sent. In the case of UDP/IP, the length of
the Message is the length of the UDP payload.

3.2 Submessage Structure
The general structure of each Submessage in a Message is as follows:

Submessage:
0...2...........7...............15.............23...............31
+-+
| submessageId | flags |E| ushort octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| |
~ contents of submessage ~
| |
+---------------+---------------+---------------+---------------+

This general structure cannot change in this major version (1) of the protocol. Sections 3.2.1 through
3.2.3 describe the meaning of the three fields of the submessage header: submessageId, flags and octet-
sToNextHeader.

3.2.1 submessageId in the Submessage Header

This octet identifies the kind of Submessage. Submessages with IDs 0x00 to 0x7f (inclusive) are pro-
tocol-specific. They are defined as part of the RTPS protocol. Version 1.0 defines the following sub-
messages:

enum SubmessageId {
PAD = 0x01,
VAR = 0x02,
ISSUE = 0x03,
ACK = 0x06,
3-1

Chapter 3 RTPS Message Format
HEARTBEAT = 0x07,
GAP = 0x08,
INFO_TS = 0x09,
INFO_SRC = 0x0c,
INFO_REPLY = 0x0d,
INFO_DST = 0x0e
};

The meaning of the submessage IDs cannot be modified in this major version (1). Additional sub-
messages can be added in higher minor versions. Submessages with ID's 0x80 to 0xff (inclusive) are
vendor-specific; they will not be defined by the protocol. Their interpretation is dependent on the
vendorId that is current when the submessage is encountered. Section 3.3 describes how the current
vendorId is determined. The current list of vendorId’s is provided in Section 2.2.1.

3.2.2 Flags in the Submessage Header

The least-significant bit (LSB) of the flags is always present in all Submessages and represents the
endianness used to encode the information in the Submessage. E=0 means big-endian, E=1 means
little-endian.

Other bits in the flag have interpretations that depend on the type of Submessage.

In the following descriptions of the Submessages, the character 'X' is used to indicate a flag that is
unused in version 1.0 of the protocol. RTPS implementations of version 1.0 should set these to zero
when sending and ignore these when receiving. Higher minor versions of the protocol can use these
flags.

3.2.3 octetsToNextHeader in the Submessage Header

The final two octets of the Submessage header contain the number of octets from the first octet of
the contents of the submessage until the first octet of the header of the next Submessage. The repre-
sentation of this field is a CDR unsigned short (ushort). If the Submessage is the last one in the Mes-
sage, the octetsToNextHeader field contains the number of octets remaining in the Message.

3.3 How to Interpret a Message
The interpretation and meaning of a Submessage within a Message may depend on the previous
Submessages within that same Message. Therefore the receiver of a Message must maintain state
from previously deserialized Submessages in the same Message.

sourceVersion The major and minor version with which the following submessages need to be inter-
preted.

sourceVendorId The vendor identification with which the following vendor-specific extensions need
to be interpreted.

sourceHostId, sourceAppId The originator’s host and application identifiers. The following submes-
sages need to be identified as if they are coming from this host and application.

destHostId, destAppId The destination’s host and application identifiers. The following submessages
need to be identified as if they are meant for this host and application.

unicastReplyIPAddress, unicastReplyPort An explicit IP address and port that provides an additional
direct way for the receiver to reply directly to the originator over unicast.

multicastReplyIPAddress, multicastReplyPort An explicit IP address and port that provides an addi-
tional direct way for the receiver to reach the originator (and potentially many others) over
multicast.

haveTimestamp, timestamp The timestamp applying to all the following submessages.
3-2

3.4 Header
3.3.1 Rules Followed By A Message Receiver

The following algorithm outlines the rules that a receiver of any Message must follow:

1. If a 4-byte Submessage header cannot be read, the rest of the Message is considered invalid.

2. The last two bytes of a Submessage header, the octetsToNextHeader field, contains the number
of octets to the next Submessage. If this field is invalid, the rest of the Message is invalid.

3. The first byte of a Submessage header is the submessageId. A Submessage with an unknown
ID must be ignored and parsing must continue with the next Submessage. Concretely: an
implementation of RTPS 1.0 must ignore any Submessages with IDs that are outside of the
SubmessageId list used by version 1.0. IDs in the vendor-specific range coming from a ven-
dorId that is unknown must be ignored and parsing must continue with the next Submessage.

4. The second byte of a Submessage header contains flags; unknown flags should be skipped.
An implementation of RTPS 1.0 should skip all flags that are marked as “X” (unused) in the
protocol.

5. A valid octetsToNextHeader field must always be used to find the next Submessage, even for
Submessages with unknown IDs.

6. A known but invalid Submessage invalidates the rest of the Message. Sections 3.5 through
3.14 each describe known Submessage and when it should be considered invalid.

Reception of a valid header and/or submessage has two effects:

o It can change the state of the receiver; this state influences how the following Submessages in
the Message are interpreted. Sections 3.5 through 3.14 show how the state changes for each
Submessage. In this version of the protocol, only the Header and the Submessages
INFO_SRC, INFO_REPLY and INFO_TS change the state of the receiver.

o The Submessage, interpreted within the Message, has a logical interpretation: it encodes one
of the five basic RTPS messages: ACK, GAP, HEARTBEAT, ISSUE or VAR.

Sections 3.4 through 3.14 describe the detailed behavior of the Header and every Submessage.

3.4 Header
This is the Header found at the beginning of every Message.

3.4.1 Format

0...2...........7...............15.............23...............31
+-+
| 'R' | 'T' | 'P' | 'S' |
+---------------+---------------+---------------+---------------+
| ProtocolVersion version | VendorId vendorId |
+---------------+---------------+---------------+---------------+
| HostId hostId |
+---------------+---------------+---------------+---------------+
| AppId appId |
+---------------+---------------+---------------+---------------+

3.4.2 Validity

A Header is invalid when any of the following are true:

o The Message has less than the required number of octets to contain a full Header.

o Its first four octets are not ’R’ ’T’ ’P’ ’S’.
3-3

Chapter 3 RTPS Message Format
o The major protocol version is larger than the major protocol version supported by the imple-
mentation.

3.4.3 Change in State of the Receiver

sourceHostId = Header.hostId
sourceAppId = Header.appId
sourceVersion = Header.version
sourceVendorId = Header.vendorId
haveTimestamp = false

3.4.4 Logical Interpretation

None

3.5 ACK
This submessage is used to communicate the state of a Reader to a Writer.

3.5.1 Submessage Format

0...2...........7...............15.............23...............31
+-+
| ACK |X|X|X|X|X|X|F|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| ObjectId readerObjectId |
+---------------+---------------+---------------+---------------+
| ObjectId writerObjectId |
+---------------+---------------+---------------+---------------+
| |
~ Bitmap bitmap ~
| |
+---------------+---------------+---------------+---------------+

3.5.2 Validity

This submessage is invalid when any of the following is true:

o octetsToNextHeader is too small.

o bitmap is invalid.

3.5.3 Change in State of the Receiver

None
3-4

3.6 GAP
3.5.4 Logical Interpretation

FINAL-bit ACK.F : When the F-bit is set, the application sending the ACK does not expect a response
to the ACK.

readerGUID <sourceHostId, sourceAppId, ACK.readerObjectId> : The GUID of the Reader that acknowl-
edges receipt of certain sequence numbers and/or requests to receive certain sequence num-
bers.

writerGUID <destHostId, destAppId, ACK.writerObjectId> : The GUID of the Writer that the reader has
received these sequence numbers from and/or wants to receive these sequence numbers from.

replyIPAddressPortList { unicastReplyIPAddress : unicastReplyPort, multicastReplyIPAddress : multicastRe-
plyPort } : This is an additional list of addresses that the receiving application can use to
respond to this ACK.

bitmap ACK.bitmap : A “0” in this bitmap means that the corresponding sequence-number is miss-
ing. A “1” in the bitmap conveys no information, that is, the corresponding sequence number
may or may not be missing. By sending an ACK, the readerGUID object acknowledges receipt
of all messages up to and including the sequence number (bitmap.bitmapBase -1).

3.6 GAP
This submessage is sent from a CSTWriter to a CSTReader to indicate that a range of sequence num-
bers is no longer relevant. The set may be a contiguous range of sequence numbers or a specific set of
sequence numbers.

3.6.1 Submessage Format

0...2...........7...............15.............23...............31
+-+
| GAP |X|X|X|X|X|X|X|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| ObjectId readerObjectId |
+---------------+---------------+---------------+---------------+
| ObjectId writerObjectId |
+---------------+---------------+---------------+---------------+
| |
+ SequenceNumber firstSeqNumber +
| |
+---------------+---------------+---------------+---------------+
| |
~ Bitmap bitmap ~
| |
+---------------+---------------+---------------+---------------+

Table 3.1 Interpretation of ACK Submessage

Field Value

FINAL-bit ACK.F

readerGUID <sourceHostId, sourceAppId, ACK.readerObjectId>

writerGUID <destHostId, destAppId, ACK.writerObjectId>

replyIPAddressPortList {
 unicastReplyIPAddress : unicastReplyPort,
 multicastReplyIPAddress : multicastReplyPort
}

bitmap ACK.bitmap
3-5

Chapter 3 RTPS Message Format
3.6.2 Validity

This submessage is invalid when any of the following are true:

o octetsToNextHeader is too small.

o bitmap is invalid.

o firstSeqNumber is 0 or negative.

3.6.3 Change in State of the Receiver

None

3.6.4 Logical Interpretation

readerGUID <destHostId, destAppId, GAP.readerObjectId> : The GUID of the CSTReader for which the
gapList is meant. The GAP.readerObjectId can be OBJECTID_UNKNOWN, in which case the
GAP applies to all Readers within the Application <destHostId, destAppId>.

writerGUID <sourceHostId, sourceAppId, GAP.writerObjectId> : The GUID of the CSTWriter to which
the gapList applies.

ACKIPAddressPortList { unicastReplyIPAddress : unicastReplyPort } : If the CSTReader that receives this
submessage needs to reply with an ACK submessage, then this ACK can be sent to one of the
explicit destinations in this list.

gapList The list of sequence numbers that are no longer available in the writerObject. This list is the
union of:

o All the sequence numbers in the range from GAP.firstSeqNumber up to GAP.bitmap.bitmapBase
- 1. This list is empty if the firstSeqNumber is greater than or equal to the bitmapBase of the bit-
map. GAP.firstSeqNumber should always be greater than or equal to 1.

and

o The sequence numbers that have the corresponding bit in the bitmap set to 1.

Table 3.2 Interpretation of GAP Submessage

Field Value

readerGUID <destHostId, destAppId, GAP.readerObjectId>

writerGUID <sourceHostId, sourceAppId, GAP.writerObjectId>

ACKIPAddressPortList {
 unicastReplyIPAddress : unicastReplyPort
}

gapList {
GAP.firstSeqNumber,
GAP.firstSeqNumber+1, ...,
GAP.bitmap.bitmapBase-1
}

and

all sequence numbers that have a corresponding bit set to 1 in the bitmap
3-6

3.7 HEARTBEAT
3.6.5 Example

A GAP with:

o firstSeqNumber = 12

o bitmap = 17/5:0011101

means that the gapList = {12, 13, 14, 15, 16, 19, 20, 22}.

3.7 HEARTBEAT
This message is sent from a Writer to a Reader to communicate the sequence numbers of data that
the Writer has available.

3.7.1 Submessage Format

0...2...........7...............15.............23...............31
+-+
| HEARTBEAT |X|X|X|X|X|X|F|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| ObjectId readerObjectId |
+---------------+---------------+---------------+---------------+
| ObjectId writerObjectId |
+---------------+---------------+---------------+---------------+
| |
+ SequenceNumber firstSeqNumber +
| |
+---------------+---------------+---------------+---------------+
| |
+ SequenceNumber lastSeqNumber +
| |
+---------------+---------------+---------------+---------------+

3.7.2 Validity

This submessage is invalid when any of the following are true:

o octetsToNextHeader is too small.

o firstSeqNumber is less than 0.

o lastSeqNumber is less than 0.

o lastSeqNumber is strictly less than firstSeqNumber.

3.7.3 Change in State of the Receiver

None
3-7

Chapter 3 RTPS Message Format
3.7.4 Logical Interpretation

FINAL-bit HEARTBEAT.F : When the F-bit is set, the application sending the HEARTBEAT does not
require a response.

readerGUID <destHostId, destAppId, HEARTBEAT.readerObjectId> : The Reader to which the heartbeat
applies. The HEARTBEAT.readerObjectId can be OBJECTID_UNKNOWN, in which case the
HEARTBEAT applies to all Readers of that writerGUID within the Application <destHostId,
destAppId>.

writerGUID <sourceHostId, sourceAppId, HEARTBEAT.writerObjectId> : The Writer to which the
HEARTBEAT applies.

ACKIPAddressPortList { unicastReplyIPAddress : unicastReplyIPPort } : An additional list of destinations
where responses (ACKs) to this submessage can be sent.

firstSeqNumber HEARTBEAT.firstSeqNumber : The first sequence number, firstSeqNumber, that is still
available and meaningful in the writerObject. This field must be greater than or equal to zero. If
it is equal to SEQUENCE_NUMBER_NONE, the Writer has no data available

lastSeqNumber HEARTBEAT.lastSeqNumber : The last sequence number, lastSeqNumber, that is avail-
able in the Writer. This field must be greater than or equal to firstSeqNumber. If firstSeqNumber
is SEQUENCE_NUMBER_NONE, lastSeqNumber must also be
SEQUENCE_NUMBER_NONE.

3.8 INFO_DST
This submessage modifies the logical destination of the submessages that follow it.

3.8.1 Submessage Format
0...2...........7...............15.............23...............31
+-+
|INFO_DST |X|X|X|X|X|X|X|E|octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| HostId hostId |
+---------------+---------------+---------------+---------------+
| AppId appId |
+---------------+---------------+---------------+---------------+

3.8.2 Validity

This submessage is invalid when:

o octetsToNextHeader is too small.

Table 3.3 Interpretation of HEARTBEAT Submessage

Field Value

FINAL-bit HEARTBEAT.F

readerGUID <destHostId, destAppId, HEARTBEAT.readerObjectId>

writerGUID <sourceHostId, sourceAppId, HEARTBEAT.writerObjectId>

ACKIPAddressPortList {
 unicastReplyIPAddress : unicastReplyIPPort
}

firstSeqNumber HEARTBEAT.firstSeqNumber

lastSeqNumber HEARTBEAT.lastSeqNumber
3-8

3.9 INFO_REPLY
3.8.3 Change In State Of The Interpreter
if(INFO_DST.hostId != HOSTID_UNKNOWN) {

destHostId = INFO_DST.hostId
} else {

destHostId = hostId of application receiving the message
}

if(INFO_DST.appId != APPID_UNKNOWN) {
destAppId = INFO_DST.appId

} else {
destAppId = appId of application receiving the message

}

In other words, an INFO_DST with a HOSTID_UNKNOWN means that any host may interpret the
following submessages as if they were meant for it. Similarly, an INFO_DST with a
APPID_UNKNOWN means that any application may interpret the following submessages as if they
were meant for it.

3.8.4 Logical Interpretation
None; this only affects the interpretation of the submessages that follow it.

3.9 INFO_REPLY
This submessage contains explicit information on where to send a reply to the submessages that fol-
low it within the same message.

3.9.1 Submessage Format

0...2...........7...............15.............23...............31
+-+
|INFO_REPLY |X|X|X|X|X|X|M|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| IPAddress unicastReplyIPAddress |
+---------------+---------------+---------------+---------------+
| Port unicastReplyPort |
+---------------+---------------+---------------+---------------+
| IPAddress multicastReplyIPAddress [only if M==1] |
+---------------+---------------+---------------+---------------+
| Port multicastReplyPort [only if M==1] |
+---------------+---------------+---------------+---------------+

3.9.2 Validity

This submessage is invalid when the following is true:

o octetsToNextHeader is too small.
3-9

Chapter 3 RTPS Message Format
3.9.3 Change in State of the Receiver

if (INFO_REPLY.unicastReplyIPAddress != IPADDRESS_INVALID) {
 unicastReplyIPAddress = INFO_REPLY.unicastReplyIPAddress;
}
unicastReplyPort = INFO_REPLY.replyPort
if (M==1) {
 multicastReplyIPAddress = INFO_REPLY.multicastReplyIPAddress
 multicastReplyPort = INFO_REPLY.multicastReplyPort
} else {
 multicastReplyIPAddress = IPADDRESS_INVALID
 multicastReplyPort = PORT_INVALID
}

3.9.4 Logical Interpretation

None, this only affects the interpretation of the submessages that follow it.

3.10 INFO_SRC
This submessage modifies the logical source of the submessages that follow it.

3.10.1 Submessage Format
0...2...........7...............15.............23...............31
+-+
| INFO_SRC |X|X|X|X|X|X|X|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| IPAddress appIPAddress |
+---------------+---------------+---------------+---------------+
| ProtocolVersion version | VendorId vendorId |
+---------------+---------------+---------------+---------------+
| HostId hostId |
+---------------+---------------+---------------+---------------+
| AppId appId |
+---------------+---------------+---------------+---------------+

3.10.2 Validity

This submessage is invalid when the following is true:

o octetsToNextHeader is too small.

3.10.3 Change in State of the Receiver

sourceHostId = INFO_SRC.hostId
sourceAppId = INFO_SRC.appId
sourceVersion = INFO_SRC.version
sourceVendorId = INFO_SRC.vendorId
unicastReplyIPAddress = INFO_SRC.appIPAddress
unicastReplyPort = PORT_INVALID
multicastReplyIPAddress = IPADDRESS_INVALID
multicastReplyPort = PORT_INVALID
haveTimestamp = false

3.10.4 Logical Interpretation

None, this only affects the interpretation of the submessages that follow it.
3-10

3.11 INFO_TS
3.11 INFO_TS
This submessage is used to send a timestamp which applies to the submessages that follow within
the same message.

3.11.1 Submessage Format
0...2...........7...............15.............23...............31
+-+
| INFO_TS |X|X|X|X|X|X|I|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| |
+ NtpTime ntpTimestamp [only if I==0] +
| |
+---------------+---------------+---------------+---------------+

3.11.2 Validity

This submessage is invalid when the following is true:

o octetsToNextHeader is too small.

3.11.3 Change in State of the Receiver

if (INFO_TS.I==0) {
 haveTimestamp = true
 timestamp = INFO_TS.ntpTimestamp
} else {
 haveTimestamp = false
}

3.11.4 Logical Interpretation

None, this only affects the interpretation of the submessages that follow it.

3.12 ISSUE
This submessage is used to send issues from a Publication to a Subscription.
3-11

Chapter 3 RTPS Message Format
3.12.1 Submessage Format
0...2...........7...............15.............23...............31
+-+
| ISSUE |X|X|X|X|X|X|P|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| ObjectId readerObjectId |
+---------------+---------------+---------------+---------------+
| ObjectId writerObjectId |
+---------------+---------------+---------------+---------------+
| |
+ SequenceNumber issueSeqNumber +
| |
+---------------+---------------+---------------+---------------+
| |
+ ParameterSequence parameters [only if P==1] +
| |
+---------------+---------------+---------------+---------------+
| |
~ UserData issueData ~
| |
+---------------+---------------+---------------+---------------+

3.12.2 Validity

This submessage is invalid when any of the following are true:

o octetsToNextHeader is too small.

o issueSeqNumber is either not strictly positive (1,2,...) or is not
SEQUENCE_NUMBER_UNKNOWN.

o the parameter sequence is invalid.

3.12.3 Change in State of the Receiver

None

3.12.4 Logical Interpretation

subscriptionGUID <destHostid, destAppId, ISSUE.readerObjectId> : The Subscription for which the
ISSUE is meant. The ISSUE.readerObjectId can be OBJECTID_UNKNOWN, in which case the
ISSUE applies to all Subscriptions within the Application <destHostId, destAppId>.

Table 3.4 Interpretation of ISSUE Submessage

Field Value

subscriptionGUID <destHostid, destAppId, ISSUE.readerObjectId>

publicationGUID <sourceHostId, sourceAppId, ISSUE.writerObjectId>

issueSeqNumber ISSUE.issueSeqNumber

(parameters) ISSUE.parameters (iff ISSUE.P==1)

ACKIPAddressPortList {
 unicastReplyIPAddress : unicastReplyPort
}

(timestamp) timestamp
(present iff haveTimestamp == true)

issueData ISSUE.issueData
3-12

3.13 PAD
publicationGUID <sourceHostId, sourceAppId, ISSUE.writerObjectId> : The Publication object that origi-
nated this issue.

issueSeqNumber ISSUE.issueSeqNumber : The sequence number of this issue; this should either be a
strictly positive number (1,2,3,...) or the special sequence-number
SEQUENCENUMBER_UNKNOWN. The latter may be used by a simple publication that
does not number consecutive issues.

parameters (optional) ISSUE.parameters : This is present iff P == 1. These parameters will allow future
extensions of the protocol. An implementation of RTPS 1.0 can ignore the contents of this
ParameterSequence.

ACKIPAddressPortList { unicastReplyIPAddress : unicastReplyPort } : The destinations to which the Pub-
lication can send an ACK message in response to this ISSUE.

timestamp (optional) Timestamp of this issue. This is present iff Timestamp == true.

issueData ISSUE.issueData : The actual user data in this issue.

3.13 PAD
This submessage has no meaning.

3.13.1 Submessage Format

0...2...........7...............15.............23...............31
+-+
| PAD |X|X|X|X|X|X|X|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+

3.13.2 Validity

This submessage is always valid.

3.13.3 Change in State of the Receiver

None

3.13.4 Logical Submessage Generated On Reception

None; the receiver skips the PAD using octetsToNextHeader.
3-13

Chapter 3 RTPS Message Format
3.14 VAR
This submessage is used to communicate information about a NetworkObject (which is part of the
Composite State). It is sent from a CSTWriter to a CSTReader.

3.14.1 Submessage Format

0...2...........7...............15.............23...............31
+-+
| VAR |X|X|X|X|H|A|P|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| ObjectId readerObjectId |
+---------------+---------------+---------------+---------------+
| ObjectId writerObjectId |
+---------------+---------------+---------------+---------------+
| HostId hostId (iff H==1) |
+---------------+---------------+---------------+---------------+
| AppId appId (iff H==1) |
+---------------+---------------+---------------+---------------+
| ObjectId objectId |
+---------------+---------------+---------------+---------------+
| |
+ SequenceNumber writerSeqNumber +
| |
+---------------+---------------+---------------+---------------+
| |
~ ParameterSequence parameters [only if P==1] ~
| |
+---------------+---------------+---------------+---------------+

3.14.2 Validity

This submessage is invalid when any of the following are true:

o octetsToNextHeader is too small.

o writerSeqNumber is not strictly positive (1, 2, ...) or is SEQUENCENUMBER_UNKNOWN.

o the parameter sequence is invalid.

3.14.3 Change in State of the Receiver

None
3-14

3.14 VAR
3.14.4 Logical interpretation

readerGUID <destHostId, destAppId, VAR.readerObjectId> : The Reader to which the heartbeat applies.
The VAR.readerObjectId can be OBJECTID_UNKNOWN, in which case the VAR applies to
all Readers of that writerGUID within the Application <destHostId, destAppId>.

writerGUID <sourceHostId, sourceAppId, VAR.writerObjectId> : The CSTWriter that sent the informa-
tion.

objectGUID <VAR.hostId, VAR.appId, VAR.objectId> (iff H == 1) or <sourceHostId, sourceAppId, VAR.objec-
tId> (iff H == 0) : The object this information (contained in the parameters) is about.

writerSeqNumber VAR.writerSeqNumber : Incremented each time a change in the Composite State pro-
vided by the CSTWriter occurs. This should be a strictly positive number (1, 2, ...). Or, the spe-
cial sequence number, SEQUENCE_NUMBER_UNKNOWN, may be sent to indicate that the
sender does not keep track of the sequence number.

timestamp (optional) current.timestamp : This is present iff curent.haveTimestamp == true. Timestamp of
the new parameters sent with this submessage.

parameters (optional) VAR.parameters : This is present iff VAR.P == 1. Contains information about the
object.

ALIVE-bit VAR.A : See Chapter 7.

ACKIPAddressPortList { unicastReplyIPAddress : unicastReplyIPPort, writer->IPAddressPortList() } : Where
to sent ACKs in reply to this submessage.

Table 3.5 Interpretation of VAR Submessage

Field Value

readerGUID <destHostId, destAppId, VAR.readerObjectId>

writerGUID <sourceHostId, sourceAppId, VAR.writerObjectId>

objectGUID <VAR.hostId, VAR.appId, VAR.objectId> (iff H == 1)

<sourceHostId, sourceAppId, VAR.objectId> (iff H == 0)

writerSeqNumber VAR.writerSeqNumber

(timestamp) current.timestamp if curent.haveTimestamp == true

(parameters) VAR.parameters and VAR.P

ALIVE-bit VAR.A

ACKIPAddressPortList {
 unicastReplyIPAddress : unicastReplyIPPort,
 writer->IPAddressPortList()
}

3-15

Chapter 3 RTPS Message Format
3.15 Versioning and Extensibility
An implementation based on this version (1.0) of the protocol should be able to process RTPS mes-
sages not only with the same major version (1) but possibly higher minor versions.

3.15.1 Allowed Extensions Within This Major Version

Within this major version, future minor versions of the protocol can augment the protocol in the fol-
lowing ways:

o Additional submessages with other submessageIds can be introduced and used anywhere in
an RTPS message. Therefore, a 1.0 implementation should skip over unknown submessages
(using the octetsToNextHeader field in the submessage header).

o Additional fields can be added to the end of a submessage that was already defined in the
current minor version. Therefore, a 1.0 implementation should skip over possible additional
fields in a submessage using the octetsToNextHeader field.

o Additional object-kinds and built-in objects with new IDs can be added; these should be
ignored by the 1.0 implementation.

o Additional parameters with new IDs can be added; these should be ignored by the 1.0 imple-
mentation.

All such changes require an increase of the minor version number.

3.15.2 What Cannot Change Within This Major Version

The following items cannot be changed within the same major version:

o A submessage cannot be deleted.

o A submessage cannot be modified except as described in Section 3.15.1.

o The meaning of the submessageIds (described in Section 3.2.1) cannot be modified.

All such changes require an increase of the major version number.
3-16

4.1 Concepts
Chapter 4

RTPS and UDP/IPv4

This chapter describes the mapping of RTPS on UDP/IP v4.

4.1 Concepts

4.1.1 RTPS Messages and the UDP Payload

When RTPS is used over UDP/IP, a Message is the contents (payload) of exactly one UDP/IP Data-
gram.

4.1.2 UDP/IP Destinations

A UDP/IP destination consists of an IPAddress and a Port. This document uses notation such as
"12.44.123.92:1024" or "225.0.1.2:6701" to refer to such a destination. The IP address can be a unicast or
multicast address.

4.1.3 Note On Relative Addresses

The RTPS protocol often sends IP addresses to a sender of Messages, so that the sender knows where
to send future Messages. These destinations are always interpreted locally by the sender of UDP dat-
agrams. Certain IP addresses, such as "127.0.0.1" have only relative meaning (i.e. they do not refer to
a unique host).

4.2 RTPS Packet Addressing
The following sections describe how a sending application can construct a list of IPAddress:Port
pairs that it can use to send Messages to remote Services. Every Service has a method, IPAddress-
PortList(), that represents this list. This IPAddressPortList is gathered by combining four sources:

❏ The well-known ports of the Network.

❏ The attributes of the Application in which the Service exists, as well as whether the Applica-
tion is a Manager or a ManagedApplication.

❏ Whether the Service is user-level or meta-level (M-bit in the GUID).

❏ Additional attributes of the Service itself.

The sender’s implementation is free to send the information to any valid destination(s) in this list
and is encouraged to make good choices, depending on its network interfaces, resources or optimiza-
tion concerns.
4-1

Chapter 4 RTPS and UDP/IPv4
4.2.1 Well-known Ports

At the Network level, RTPS uses the following three well-known ports:

wellknownManagerPort = portBaseNumber + 10 * portGroupNumber

wellknownUsertrafficMulticastPort =
1 + portBaseNumber + 10 * portGroupNumber

wellknownMetatrafficMulticastPort =
2 + portBaseNumber + 10 * portGroupNumber

Within a Network, all applications need to use the same portBaseNumber. Applications that want to
communicate with each other use the same portGroupNumber; applications that need to be isolated
from each other use a different portGroupNumber.

Each application needs to be configured with the correct portBaseNumber and portGroupNumber.

Except for the rules stated above, RTPS does not define which portBaseNumber and portGroup-
Number are used nor how the Applications participating in a Network obtain this information.

4.2.2 Relevant Attributes of an Application

The relevant attributes of an Application are:

unicastIPAddressList These are the unicast IP addresses of the Application; they are the unicast IP
addresses of the host on which the Application runs (there can be multiple addresses on a
multi-NIC host). Depending on the network topology, a sending application might only be
able to address that application on a subset of these IP addresses.

metatrafficMulticastIPAddressList For the purposes of meta-traffic, an Application can also accept
Messages on this set of multicast addresses.

usertrafficUnicastPort and metatrafficUnicastPort Every Application has exactly two application-
dependent ports where it receives unicast user-traffic and unicast meta-traffic, respectively. A
datagram sent to one of the application’s unicast IP addresses and to one of these ports should
only be received by one Application.
4-2

4.2 RTPS Packet Addressing
These attributes define two lists of UDP destinations. The first list, represented by the method user-
trafficAddressPortList(), is used for user data; the second list, metatrafficAddressPortList(), is used
for the RTPS metatraffic. These lists are defined as follows:

Application::metatrafficIPAddressPortList() =
{
unicastIPAddressList[] : metatrafficUnicastPort,
metatrafficMulticastIPAddressList[] : wellknownMetatrafficMulticastPort
}

Application::usertrafficIPAddressPortList() =
{
unicastIPAddressList[] : usertrafficUnicastPort
}

RTPS messages sent to the multicast destinations can be received by multiple applications on multi-
ple hosts.

4.2.3 Manager

For the special case of a Manager, these lists are defined as follows:

Manager::metatrafficIPAddressPortList() =
{
unicastIPAddressList[] : wellknownManagerPort,
metatrafficMulticastIPAddressList[] : wellknownManagerPort
}

A manager receives all data on one well-known port, the wellknownManagerPort.

Manager::usertrafficIPAddressPortList() = NULL

A Manager does not handle user data, only meta-data.

4.2.4 Definition of the IPAddressPortList()

A distinction needs to be made between a Reader and a Writer.

A Writer that is a meta-object is addressed through the metatraffic ports of the Application to which
it belongs; if the Writer is a user-object, it is addressed through its Application’s user-data ports:

iff user-object
Writer::IPAddressPortList() = Application()->usertrafficIPAddressPortList()

iff meta-object
Writer::IPAddressPortList() = Application()->metatrafficIPAddressPortList()

Note that the GUID of the object immediately shows whether the object is a meta-object or a user-
object.

A Reader (such as a Subscription) has an additional attribute: usertrafficMulticastIPAddressList.

The IPAddressPortList of a Reader is defined as follows:

iff user-object
Reader::IPAddressPortList() =
 {
 Application()->usertrafficIPAddressPortList(),
 usertrafficMulticastIPAddressList[] : wellknownUsertrafficMulticastPort
 }

iff meta-object
Reader::IPAddressPortList() = Application()->metatrafficIPAddressPortList()
4-3

Chapter 4 RTPS and UDP/IPv4
A user-level Reader can be addressed by unicast over the destination in the usertrafficIPAddress-
PortList of the Application to which it belongs or by sending UDP multicast to the additional multi-
cast addresses the Reader provides at the wellknownUsertrafficMulticastPort.

A meta-Reader is addressed through the metatrafficIPAddressPortList of the application to which it
belongs.

4.3 Possible Destinations for Specific Submessages
This section lists the UDP/IP destinations to which the basic Submessages (ACK, HEARTBEAT,
GAP, ISSUE and VAR) can be sent.

4.3.1 Possible Destinations of an ACK

An ACK is usually sent to one of the known ports of the Writer (this could be a Publication or a
CSTWriter) for which the ACK is meant (these ports are defined in Section 4.2.4 as writer->IPAd-
dressPortList()).

An ACK can also be sent in response to a VAR, HEARTBEAT, GAP or ISSUE. The logical interpre-
tation of these submessages explicitly contains an ACKIPAddressPortList, which contains possible
additional destinations where such an ACK can be sent.

4.3.2 Possible Destinations of a GAP

A GAP is normally sent to a CSTReader which can be addressed through the
reader->IPAddressPortList(), defined in Section 4.2.4.

A GAP can also be sent in response to an ACK, in which case the GAP can be sent to one of the des-
tinations in the logical replyIPAddressPortList of the ACK.

4.3.3 Possible Destinations of a HEARTBEAT

A HEARTBEAT is sent to a Reader, reader, (either a CSTReader or a Subscription); which can be
addressed on reader->IPAddressPortList(), defined in Section 4.2.4.

A HEARTBEAT can also be sent in response to an ACK, in which case the HEARTBEAT can be sent
to one of the destinations in the logical replyIPAddressPortList of the ACK.

4.3.4 Possible Destinations of an ISSUE

To address a Subscription, sub, (a subclass of a Reader), this submessage needs to be sent to one of
the destinations in sub->IPAddressPortList().

An ISSUE can also be sent in response to an ACK, in which case the ISSUE can also be sent to one of
the destinations in the logical replyIPAddressPortList of the ACK.

4.3.5 Possible Destinations of a VAR

To address a Reader, reader, the VAR is sent to one of the address/ports in
reader->IPAddressPortList().

A VAR can also be sent in response to an ACK, in which case the VAR can also be sent to one of the
destinations in the logical replyIPAddressPortList of the ACK.
4-4

5.1 Concept
Chapter 5

Attributes of Objects and Metatraffic

5.1 Concept
Figure 5.1 shows an overview of all the attributes of the NetworkObjects. Some of the attributes are
frozen, indicated by the symbol "@" in front of them. The value of a frozen attribute cannot change
during the life of the object. All attributes of a NetworkObject (except for its GUID) have default val-
ues.The protocol uses the CST protocol to convey information about the creation, destruction and
attributes of Objects (Applications and their Services) on the Network.

On the wire, the attributes of the objects are encoded in the ParameterSequence that is part of the
VAR submessage (see Section 3.14). The information in the ParameterSequence applies to the object
with GUID objectGUID. This GUID immediately encodes the class of the object and, therefore, the rel-
evant attributes of the object and their default values.

When the parameter sequence does not contain information about an attribute that is part of the
class, the receiving application may assume that attribute has the default value.

The semantics of these classes and their attributes cannot be changed in this major version (1) of the
protocol. Higher minor versions can extend this model in two ways:

❏ New classes may be added.

❏ New attributes may be added to the existing classes.

Table 5.1 shows the attributes of a ManagedApplication. The convention followed is that a preced-

ing “@” denotes that the attribute is frozen and thus cannot be changed. A trailing “[]” denotes an
array that indicates that the attribute can be repeated. a Manager submessage has the contents
described in Table 5.1 and another attribute described in Table 5.2. The description of the types are
included in Section 6.1.

Table 5.1 ManagedApplication Attributes

Attributes Type Default

unicastIPAddressList [] IPAddress { }

@protocolVersion ProtocolVersion PROTOCOL_VERSION_1_0

@vendorId VendorId VENDOR_ID_UNKNOWN

@expirationTime NtpTime {180, 0}

@managerKeyList unsigned long 0

@metatrafficMulticastIPAddressList [] IPAddress { }

@metatrafficUnicastPort Port PORT_INVALID

@usertrafficUnicastPort Port PORT_INVALID

Table 5.2 Manager Submessage attributes (in addition to Table 5.1)

Attributes Type Default

vargAppsSequenceNumberLast SequenceNumber SEQUENCE_NUMBER_UNKNOWN
5-1

Chapter 5 Attributes of Objects and Metatraffic
The next two tables represent the Publication and Subscription attributes, respectively.

Figure 5.1 Object Attributes

Table 5.3 Publication attributes

Attributes Type Default

@topic PathName “DefaultTopic”

@typeName TypeName ““

@typeChecksum TypeChecksum 0

strength long 1

persistence NtpTime {0, 0}
5-2

5.2 Wire Format of the ParameterSequence
5.2 Wire Format of the ParameterSequence
A ParameterSequence is a sequence of Parameters, terminated with a sentinel. Each Parameter
starts aligned on a 4-byte boundary with respect to the start of the ParameterSequence. The repre-
sentation of each parameter starts with a ParameterId (identifying the parameter), followed by a
ParameterLength (the number of octets from the first octet of the value to the ID of the next parame-
ter), followed by the value of the parameter itself.

When an attribute is a list (indicated by the "[]" after the type-name in the object model), the ele-
ments of the array are represented in the parameter sequence by listing the individual elements with
the same (repeated) parameter ID.

ParameterSequence
....2...........8...............16.............24...............32
+-+
| ParameterId id_1 | ParameterLength length_1 |
+---------------+---------------+---------------+---------------+
| |
~ value_1 ~
| |
+---------------+---------------+---------------+---------------+
| ParameterId id_2 | ParameterLength length_2 |
+---------------+---------------+---------------+---------------+
| |
~ value_2 ~
| |
~ ~
| |
+---------------+---------------+---------------+---------------+
| PID_SENTINEL | ignored |
+---------------+---------------+---------------+---------------+

ParameterId and ParameterLength are unsigned shorts:

typedef unsigned short ParameterId;
typedef unsigned short ParameterLength;

The parameter length is the number of octets following the length of the parameter to reach the ID of
the next parameter (or the ID of the sentinel). Because every ParameterId starts on a 4-byte bound-
ary, the ParameterLength is always a multiple of four.

@expectsAck boolean true

sendQueueSize unsigned long 1

@reliabilityOffered unsigned long 0

Table 5.3 Publication attributes

Attributes Type Default
5-3

Chapter 5 Attributes of Objects and Metatraffic
5.3 ParameterID Definitions

Future minor versions of the protocol can add new parameters up to a maximum parameter ID of
0x7fff. The range 0x8000 to 0xffff is reserved for vendor-specific options and will not be used by any
future versions of the protocol.

Table 5.4 ParameterID Values

ID Name Used For Fields

0x0000 PID_PAD -

0x0001 PID_SENTINEL -

0x0002 PID_EXPIRATION_TIME Application::expirationTime : NtpTime

0x0003 PID_PERSISTENCE Publication::persistence : NtpTime

0x0004 PID_MINIMUM_SEPARATION Subscription::minimumSeparation : NtpTime

0x0005 PID_TOPIC Publication::topic : PathName,

Subscription::topic : PathName

0x0006 PID_STRENGTH Publication::strength : long

0x0007 PID_TYPE_NAME Publication::typeName : TypeName,

Subscription::typeName : TypeName

0x0008 PID_TYPE_CHECKSUM Publication::typeChecksum : TypeChecksum,

Subscription::typeChecksum : TypeChecksum

0x0009 RTPS_PID_TYPE2_NAME

0x000a RTPS_PID_TYPE2_CHECKSUM

0x000b PID_METATRAFFIC_
MULTICAST_IPADDRESS

Application::metatrafficMulticastIPAddressList: IPAddress[]

0x000c PID_APP_IPADDRESS Application::unicastIPAddressList : IPAddress[]

0x000d PID_METATRAFFIC_
UNICAST_PORT

Application::metatrafficUnicastPort : Port

0x000e PID_USERDATA_
UNICAST_PORT

Application::userdataUnicastPort :Port

0x0010 PID_EXPECTS_ACK Publication::expectsAck : boolean

0x0011 PID_USERDATA_
MULTICAST_IPADDRESS

Reader::userdataMulticastIPAddressList : IPAddress[]

0x0012 PID_MANAGER_KEY Application::managerKeyList : unsigned long []

0x0013 PID_SEND_QUEUE_SIZE Publication::sendQueueSize : unsigned long

0x0015 PID_PROTOCOL_VERSION Application::protocolVersion : ProtocolVersion

0x0016 PID_VENDOR_ID Application::vendorId : VendorId

0x0017 PID_VARGAPPS_SEQUENCE_
NUMBER_LAST

Manager::vargAppsSequenceNumberLast : SequenceNumber

0x0018 PID_RECV_QUEUE_SIZE Subscription::recvQueueSize : unsigned long

0x0019 PID_RELIABILITY_
OFFERED

Publication::reliabilityOffered : unsigned long

0x001a PID_RELIABILITY_
REQUESTED

Subscription::reliabilityRequested : unsigned long
5-4

5.4 Reserved Objects
5.4 Reserved Objects

5.4.1 Description

To ensure the automatic discovery of Applications and Services in a Network, every Manager and
every ManagedApplication contains a number of special built-in NetworkObjects, which have
reserved objectId’s.

These special objects fall into these categories:

❏ The Application itself is a NetworkObject with a special GUID (the instance of the Applica-
tion is called applicationSelf). In addition, every Application has a CSTWriter (writerApplica-
tionSelf) that disseminates the attributes of the local Application on the Network.

❏ Several objects are dedicated to the discovery of Managers and ManagedApplications on the
Network. Every ManagedApplication has the CSTReaders readerApplications and readerMan-
agers, through which the existence and attributes of the remote ManagedApplications and
remote Managers, respectively, are obtained. Every Manager has the corresponding CST-
Writers writeApplications and writeManagers.

❏ As seen in Figure 5.2, every ManagedApplication has, among others, two instances of a
CSTReader (readerPublications and readerSubscriptions) and two instances of a CSTWriter
(writerPublications and writerSubscriptions). Through the CSTReaders, the ManagedApplica-
tion can receive information about the existence and attributes of all the remote Publications
and Subscriptions in the Network. Through the CSTWriters, the ManagedApplication can
send out information about its local Publications and Subscriptions.

Future versions of the protocol may add additional special objects and expand the list of reserved
objectId’s within the same major version number.

Chapter 8 describes in detail what Messages are exchanged between these special objects.
5-5

Chapter 5 Attributes of Objects and Metatraffic
5.4.2 Overview: Special Objects in a ManagedApplication

Every ManagedApplication contains the following special objects seen in Figure 5.2.

applicationSelf :ManagedApplication The attributes of the ManagedApplication itself.

writerApplicationSelf :CSTWriter A Writer that makes the attributes of the application itself avail-
able.

readerApplications :CSTReader The Reader through which the application receives the attributes
of other Applications on the Network.

readerManagers :CSTReader The Reader through which the application receives the attributes of
Managers on the Network.

readerPublications :CSTReader The Reader through which the application receives information
about remote Publications that exist on the Network.

writerPublications :CSTWriter The Writer that makes the attributes of the local Publications (con-
tained in the local application) available on the Network.

readerSubscriptions:CSTReader The Reader through which the application receives information
about remote Subscriptions that exist on the Network.

Figure 5.2 Special Objects of a ManagedApplication
5-6

5.4 Reserved Objects
writerSubscriptions :CSTWriter The Writer that makes the attributes of the local Subscriptions (con-
tained in the local application) available on the Network.

5.4.3 Overview: Special Objects in a Manager
Every Manager contains the following special objects seen in Figure 5.3.

managerSelf :Manager The attributes of the Manager itself.

writerApplicationSelf :CSTWriter A Writer that makes the attributes of the application itself avail-
able.

readerManagers :CSTReader The Reader through which the Manager discovers the other Manag-
ers on the Network.

writerManagers :CSTWriter The Writer through which a Manager provides information on all the
other Managers in the Network to its managees.

writerApplications :CSTWriter The Writer through which a Manager provides information on all its
managees.

5.4.4 Reserved ObjectIds

Table 5.5 lists the current reserved objectIds. All these objects are also meta-objects; so the M-bit and
R-bit are set in the objectId. The meaning of these objects cannot change in this major version (1) of
the protocol but future minor versions may add additional reserved objectId’s.

Figure 5.3 Special Objects of a Manager
5-7

Chapter 5 Attributes of Objects and Metatraffic
5.5 Examples

5.5.1 Examples of GUIDs

Table 5.6 shows some examples of GUIDs and their interpretations.

Table 5.5 Predefined instanceIds

Predefined
instanceId objectId of this Built-in Object Description

applicationSelf (OID_APP) = {00,00,01,c1} The Application (ManagedApplica-
tion or Manager) itself.

writerApplicationSelf (OID_WRITE_APPSELF) =
{00,00,08,c2}

The CSTWriter which makes the
attributes of the local Application
available on the Network. Every
Application has one of these.

writerApplications (OID_WRITE_APP) = {00,00,01,c2} Every Manager has this CSTWriter, to
make the attributes of the Man-
agedApplications that are its manag-
ees available on the Network.

readerApplications (OID_READ_APP) = {00,00,01,c7} Every Manager has such a
CSTReader, through which it reads
the managees from Managers.

writerManagers (OID_WRITE_MGR) = {00,00,07,c2} Every Manager has this CSTWriter
containing the other Managers.

readerManagers (OID_READ_MGR) = {00,00,07,c7} CSTReader through which an Appli-
cation obtains information about the
attributes of the Managers on the
Network.

writerPublications (OID_WRITE_PUBL) = {00,00,03,c2} Every ManagedApplication makes
its local Publications available
through this CSTWriter.

readerPublications (OID_READ_PUBL) = {00,00,03,c7} This CSTReader reads the attributes
of remote Publications. It is present
in every ManagedApplication.

writerSubscriptions (OID_WRITE_SUBS) = {00,00,04,c2} Every ManagedApplication makes
its local Subscriptions available
through this CSTWriter.

readerSubscriptions (OID_READ_SUBS) = {00,00,04,c7} This CSTReader reads the attributes
of remote Subscriptions. It is present
in every ManagedApplication.
5-8

5.5 Examples
5.5.2 Examples of ParameterSequences

Suppose an application receives a VAR submessage for an object with GUID
<{11,22,33,44},{55,66,77,02},{00,00,01,c1}>. This GUID indicates this is a Manager (the kind of the
appId is 0x02).

Suppose the parameter list in the VAR submessage contains a parameter sequence with the contents
listed in Table 5.7. This means that the application knows that the remote Manager object with GUID

<{11,22,33,44},{55,66,77,02},{00,00,01,c1}> has the attributes listed in Table 5.8.

Note that the application uses default values for those attributes for which it has not explicitly
received information.

Table 5.6 Interpretation of Sample GUIDs

<hostId, appId, objectId> Interpretation

{aa,bb,cc,dd} {11,22,33,01} {00,00,07,03} A user-level object of class Publication.

{11,22,33,02} {00,00,07,c2} A meta-CSTWriter that resides on a Manager; the object
has a special instanceId: it is the CSTWriter of all Man-
agers for which the Manager keeps information.

{11,22,33,01} {00,00,17,c2} This is a special instanceId; the object is a meta-level
CSTWriter, however, version 1.0 does not define this
special instanceId (a higher-level minor-version might
define it). An implementation of version 1.0 should
classify this GUID as UNKNOWN.

{11,22,33,01} {ee,ee,ee,02} A user-level CSTWriter in an Application.

{11,22,33,01} {dd,dd,dd,82} A meta-level CSTWriter in an Application.

{11,22,33,01} {00,00,01,c1} A special meta-object of kind Application: the special
instanceId "000001c1" is defined to refer to the applica-
tion itself, <{aa,bb,cc,dd},{11,22,33,01}>.

{11,22,33,02} {00,00,01,c1} The same objectId as the previous example; the only
difference is that the receiver knows from the appId
that it is dealing with a special application, a Manager.

{11,22,33,17} {00,00,01,c1} Should be classified as UNKNOWN, because the kind
of application ("17") is unknown.

{11,22,33,01} {00,00,01,40} Should be classified as UNKNOWN because the kind
of objectId is unknown.

{00,00,00,00} {11,22,33,01} {00,00,01,c1} Should be classified as UNKNOWN because the hostId
is unknown.

Table 5.7 Example VAR Submessage

Parameter ID Value

PID_EXPIRATION_TIME {10,0}

PID_APP_IPADDRESS 206.197.67.102

PID_APP_IPADDRESS 206.167.12.12

PID_METATRAFFIC_UNICAST_PORT 1051

PID_USERDATA_UNICAST_PORT 1052

PID_TOPIC "abc"

0x00a0 123456

0x9001 abcdef
5-9

Chapter 5 Attributes of Objects and Metatraffic
The receiving application ignores the last three parameters in the parameter sequence of Table 5.7:

❏ The parameter PID_TOPIC is a known parameter; but in version 1.0 of the protocol, it does
not change a known attribute of a Manager; this parameter should be ignored. This is not an
error.

❏ The parameter with ID 0x00a0 is an unknown parameter that might have been added in a
higher minor version of the protocol; this parameter should be ignored. This is not an error.

❏ The parameter with ID 0x9001 is a vendor-specific parameter: if the application does not
know about this vendor-specific extension, this parameter should be ignored. This is not an
error.

Table 5.8 Example Manager Attributes

Attribute Contents

expirationTime {10,0}

managerKey 0

metatrafficMulticastIPAddressList {}

metatrafficUnicastPort 1051

usertrafficUnicastPort 1052

protocolVersion PROTOCOL_VERSION_1_0

unicastIPAddressList { 206.197.67.102, 206.167.12.12}

vendorId VENDORID_UNKNOWN

vargAppsSequenceNumberLast SEQUENCE_NUMBER_UNKNOWN
5-10

6.1 Publication and Subscription Objects
Chapter 6

Publish-Subscribe Protocol

This chapter describes the Publish-Subscribe Protocol, which sends issues containing UserData from
Publications to Subscriptions. The chapter separately describes the protocols for the case of best-
effort publish-subscribe and reliable publish-subscribe and shows the representation of UserData
and the related type-checking.

6.1 Publication and Subscription Objects

6.1.1 Object Model

The following figure shows the relevant aspects of the RTPS object model. This section only describes
the simple case of best-effort Subscriptions (the Subscription attribute reliabilityRequested is 0)

6.1.1.1 Topic And Type Properties

Every Publication and Subscription has the following three properties:

topic The name of the information in the Network that is published or subscribed to.

typeName The name of the type of this data.

typeChecksum A checksum that identifies the CDR-representation of the data.

The types and meaning of these attributes is described in detail in Section 6.2.
6-1

Chapter 6 Publish-Subscribe Protocol
A Publication and Subscription "match" when the following conditions are satisfied:

o They have the same value for the attribute topic.

o They have the same value for the attribute typeName or this string is the empty string for one
of the two objects.

o They have the same value for the attribute typeChecksum or this number is 0 for one of the two
objects.

6.1.1.2 Subscription Properties: minimumSeparation

The minimumSeparation is the minimum time between two consecutive issues received by the Sub-
scription. It defines the maximum rate at which the Subscription is prepared to receive issues. Pub-
lications sending to this Subscription should try to send issues so that they are spaced at least this
far apart.

6.1.1.3 Publication Properties: strength, persistence

The strength is the precedence of the issue sent by the Publication; the persistence indicates how long
the issue is valid. Strength and persistence allow the receiver to arbitrate if issues are received from
several matching publications.

6.1.1.4 Reliability

Publications can offer multiple reliability policies ranging from best-efforts to strict (blocking) reli-
ability. Subscription can request multiple policies of desired reliability and specify the relative prece-
dence of each policy. Publications will automatically select among the highest precedence requested
policy that is offered by the publication.

The reliability policies offered by the publication are part of the publication declaration and are
listed with using the parameter PID_PUBL_RELIABILITY_OFFERED. The reliability policies
requested by the subscription are part of the subscription declaration and are listed with using the
parameter PID_SUBS_RELIABILITY_REQUESTED.

The relative order of each PID_SUBS_RELIABILITY_REQUESTED in the subscription declaration
indicates relative precedence. The policies are ordered in decreasing order of precedence, that is,
starting with the highest precedence requested policy.

Version 1.0 of the RTPS protocol defines two reliability policies: best-efforts and strict.

Value Name

0 PID_VALUE_RELIABILITY_BEST_EFFORTS

1 PID_VALUE_RELIABILITY_STRICT
6-2

6.1 Publication and Subscription Objects
6.1.1.5 Deployment

The following figure shows a possible deployed system of Publications and Subscriptions: for the
following description, only matching objects matter. In RTPS, there can be multiple matching Publi-
cations and Subscriptions on the Network.

6.1.2 Publication Behavior Towards Best-Effort Subscriptions

The Publication is given user data by the application (represented by the method NewIssue(), which
gives the UserData to the Publication). The Publication maintains a queue called the sendQueue
with space for sendQueueSize issues. Every time a new issue is given to the Publication, it places it
in the sendQueue and increases the lastModificationSeqNumber.
6-3

Chapter 6 Publish-Subscribe Protocol
The Publication sends this UserData to all the matching Subscriptions on the Network using the
ISSUE submessage.

6.1.2.1 Contents of the Publication Message

A Publication puts the information from Table 6.1 in the ISSUE submessage.

6.1.2.2 When to Send an Issue

The publication needs to try to minimize latency while also trying to respect the minimumSeparation
of the subscriptions.

6.1.2.3 Best-Effort Subscriptions

A best-effort subscription is a completely passive element that receives Messages containing ISSUEs
from matching publications; it does not send messages itself.

6.1.3 Publication Behavior Towards Strict-Reliable Subscriptions

The Publication is given user data by the application (represented by the method NewIssue(),
which gives the UserData to the Publication).

The Publication maintains a queue called the sendQueue with space for sendQueueSize issues.
Every time a new issue is given to the Publication, it attempts to place it in the sendQueue. The
attempt will succeed if either the queue has space available, or else there are some issues that can be
removed from the queue. Otherwise the attempt will fail.

If the attempt succeeds, the lastModificationSeqNumber is increased, and the issue is associated with
that sequence number.

If the attempt fails the Publication will block until it is possible to remove at least one issue from the
queue.

The Publication keeps track of all the matching strict-reliable Subscriptions on the Network. The
Publication keeps track of the issues (identified by the associated sequenceNumber) that have been
acknowledged by each strict-reliable Subscription.

Issues can only be removed from the sendQueue if they have been acknowledged by all Active
strict-reliable Subscriptions on the Network.

A strict-reliable Subscriptions is Active if and only if the Publication receives timely ACK messages
from it in response to the HEARTBEAT messages it sends. The actual timing of HEARBEAT mes-
sages sent and the elapsed time required to declare a Subscription non-Active is middleware depen-
dent. It is expected that the implementation will allow the application developer to tune the
behavior to the specific timing and reliability requirements of the application.

Table 6.1 ISSUE generated by an RTPSPublication Publication

Field in ISSUE
Submessage Contents

subscriptionGUID < HOSTID_UNKNOWN, APPID_UNKNOWN, OBJECTID_UNKNOWN>

(the issues sent by a best-effort publication will be usable by all interested subscrip-
tions)

publicationGUID < pub->hostId, pub->appId, pub->objectId >

issueSeqNumber pub->lastModificationSequenceNumber

(parameters) NONE

(timestamp) optional timestamp of the issue

issueData user data
6-4

6.2 Representation of User Data
The Publication sends this UserData to all the matching Subscriptions on the Network using the
ISSUE submessage.

The Publication sends HEARTBEAT messages to all matching strict-reliable Subscriptions on the
Network.

HEARTBEAT messages sent to strict-reliable Subscriptions that have not acknowledged all issues in
the sendQueue must have the FINAL-bit unset.

HEARTBEAT messages sent to strict-reliable Subscriptions that have acknowledged all issues in the
sendQueue can have the FINAL-bit set or unset. The decision is middleware specific.

6.1.3.1 When to Send an Issue

The publication needs to try to minimize latency while also trying to respect the minimumSeparation
of the subscriptions.

6.1.3.2 When to Send a HEARTBEAT

The timing of HEARTBEAT messages is middleware dependent. However, the publication must
continue sending HEARTBEAT messages to all Active strict-reliable subscriptions that have not
acknowledged all issues up to and including the one with sequence number lastModificationSeqNum-
ber.

6.1.3.3 Strict-Reliable Subscriptions

Strict-reliable Subscriptions receives Messages containing ISSUEs and HEARTBEATs from match-
ing publications and send back ACK Messages in response.

6.1.3.4 When to Send an ACK

Strict-reliable Subscriptions should only send ACK Messages in response to HEARTBEATs.

If the HEARTBEAT does not have the FINAL-bit set, then the subscription must send an ACK Mes-
sage back.

If the HEARTBEAT does has the FINAL-bit set, then the subscription should only send an ACK
Message back if it has not received all issues up to HEARTBEAT’s lastSeqNumber.

The strict-reliable Subscriptions can choose to send the ACK Messages back immediately in
response to the HEARTBEATs or else it can schedule the response for a certain time in the future. It
can also coalesce related responses so there need not be a one-to-one correspondence between a
HEARTBEAT and an ACK response. These decisions and the timing specifics are middleware depen-
dent.

6.1.3.5 Contents of the ACK Message

A Subscription puts the information from Table 6.2 in the ACK submessage. In this table HEART-
BEAT stands for the heartbeat message that triggered the ACK as a response.

6.1.3.6 Contents of the HEARTBEAT Message

A Publication puts the information from Table 6.3 in the HEARTBEAT submessage sent to strict-reli-
able subscriptions.

6.2 Representation of User Data
UserData is sent in the ISSUE submessage from a Publication to one or more Subscriptions.

The topic of that data is an attribute of the Publication and Subscription. The type of this topic
attribute is PathName.
6-5

Chapter 6 Publish-Subscribe Protocol
To ensure type-consistency between the Publication and Subscription, both have additional
attributes typeName (of type TypeName) and typeChecksum (of type TypeChecksum).

The following sections describe the encapsulation of user data in CDR format in the ISSUE, and the
meaning of the TypeName and TypeChecksum structures and the PathName structure that is used
in the topic.

6.2.1 Format of Data in UserData
User data is represented on the wire in CDR format, as specified in Appendix A[]. The endianness
used in the representation of the user data is defined by the endianness of the submessage: the E-bit
present in every submessage (see Section 3.2.2). For purposes of alignment when encoding/decod-
ing user data elements that need 8-byte alignment, the CDR stream will be reset at the start of the
UserData block.

The RTPS protocol assumes that the sender and receiver of UserData know the format of the type, so
that they can serialize and deserialize the data in the correct CDR format. RTPS does not define how
the sender and receiver get this type information but does define optional mechanisms to check
whether the types are consistent.

Table 6.2 ACK Sent By a Subscription in Response to a HEARTBEAT Sent By a Matching Publication

Field in ISSUE
Submessage Contents

readerGUID < sub->hostId, sub->appId, sub->objectId >

writerGUID < pub->hostId, pub->appId, pub->objectId >

Bitmap The specifics of the bitmap are middleware-dependent. However, it must meet the fol-
lowing constraints:

1 Bitmap.bitmapBase>= HEARTBEAT.firstSeqNum.

2. The Subscriber has received all issues up-to and including Bitmap.bitmapBase-1

3. Bits are only set to “0” if the Subscription is missing the corresponding sequence
numbers.

Table 6.3 HEARTBEAT Sent By a Publication to a Matching Strict-Reliable Subscription

Field in ISSUE
Submessage Contents

readerGUID This can take several forms to indicate whether the message is directed to a specific sub-
scription or to all subscriptions. The distinction is based on whether the objectId portion
is OBJECTID_UNKNOWN.

If the objectId=OBJECTID_UNKNOWN then the reader GUID is:

< HOSTID_UNKNOWN, APPID_UNKNOWN, OBJECTID_UNKNOWN>

This indicates the heartbeat applies to all subscriptions.

If the objectId!=OBJECTID_UNKNOWN then the readerGUID is:

< sub->hostId, sub->appId, sub->objectId >

This indicates that the heartbeat applies to one specific subscription.

writerGUID < pub->hostId, pub->appId, pub->objectId >

firstSeqNumber The first sequence number available to the Subscription. This sequence number must be
greater or equal to (lastSeqNumber-sendQueueSize). It may not be exactly this because
either not enough issues have been published to fill the sendQueue, or else some mid-
dleware-specific option causes certain issues to expire their validity.

lastSeqNumber pub->lastModificationSequenceNumber
6-6

6.2 Representation of User Data
6.2.2 TypeName

TypeName is a string composed of up to TYPENAME_LEN_MAX characters.

#define TYPENAME_LEN_MAX 63
typedef string<TYPENAME_LEN_MAX> TypeName;

The RTPS protocol does not define the relationship between this type-name and the CDR type of the
issues. The contents of the type-name can be used freely by the application level. The RTPS mecha-
nism only checks that the typeName of Publication and Subscription are equal. The middleware
should not allow communication if the strings are not equal in length and contents.

The default TypeName is the empty string (""). The empty string means that the type-name is
unknown and that type-checking should not be done.

6.2.3 TypeChecksum

The typeChecksum is used to verify that the format of the user data is consistent. It is a
4-byte unsigned number:

typedef unsigned long TypeChecksum;

In contrast to the TypeName, the RTPS protocol defines the relationship between the CDR type of the
data and the number in the checksum. The default checksum is the number 0, which means that the
checksum has not been generated and cannot be used to check type-safety. If both the sender and
receiver declare the checksum to be something other than 0, the RTPS mechanism should only allow
communication if the numbers are equal. Future versions will expand on how this field is generated.

6.2.4 PathName

The PathName is a string with a maximum length of 255 characters:

#define PATHNAME_LEN_MAX 255
typedef string<PATH_LEN_MAX> PathName;

This is the type of the field topic in a Publication and Subscription.
6-7

Chapter 6 Publish-Subscribe Protocol
6-8

7.1 Object Model
Chapter 7

CST Protocol

The Composite State Transfer (CST) protocol transfers Composite State from CSTWriters to
CSTReaders.

7.1 Object Model
Figure 7.1 shows the relevant aspects of the RTPS object model.

The classes CSTWriter and CSTReader and their base-classes are part of the RTPS object model
described in earlier chapters. To facilitate the description of the CST protocol, two classes are added:
CSTRemoteReader and CSTRemoteWriter.

A CSTWriter locally instantiates a CSTRemoteReader for each remote CSTReader that it transfers
information to. Because the CST protocol allows one CSTWriter to transfer data concurrently to
many CSTReaders, the CSTWriter can have several local CSTRemoteReaders.

The complementary class on the reader’s side is the CSTRemoteWriter. A CSTReader has a local
CSTRemoteWriter for each remote CSTWriter it receives data from.

The CSTRemoteWriter and CSTRemoteReader are not NetworkObjects; they do not have a GUID
and are therefore not remotely accessible.

Figure 7.1 CST Protocol Object Model
7-1

Chapter 7 CST Protocol
7.2 Structure of the Composite State (CS)
The goal of the CST protocol is to transfer Composite State (CS) from CSTWriters to the interested
CSTReaders. This CS is composed of the attributes of a set of NetworkObjects.

The initial CS is an empty set. This CS can change dynamically through the following three kinds of
CSChanges:

❏ A new NetworkObject (with a new unique GUID) is added to the CS of the CSTWriter.

❏ A NetworkObject is removed from the CS of the CSTWriter.

❏ One or more attributes of a NetworkObject within the CS change.

The goal of the CST protocol is to allow the CSTReaders to reconstruct the CS in the CSTWriter: the
full set of NetworkObjects in the CS and their attributes. The CST protocol is aimed at transferring
the current CS and avoids transferring the entire history of CSChanges that led to the current CS.

7.3 CSTWriter

7.3.1 Overview

The following sections describe the behavior of the CSTWriter, the CSTChangeForReader and the
CSTRemoteReader.

7.3.2 CSTWriter Behavior

The current CS of the CSTWriter is represented by a sequence of CSChanges. The CSChanges are
sequentially ordered by their SequenceNumber.

Every change in the CS of the CSTWriter creates a new CSChange with a new SequenceNumber.
The objectGUID of the new CSChange is the GUID of the NetworkObject that the change in the CS
applies to. The attributes of that NetworkObject are represented as a ParameterSequence in the
CSChange. The alive boolean is set to FALSE iff the CSChange represents the removal of the Net-
workObject from the set of objects in the CS.
7-2

7.3 CSTWriter
7.3.3 CSChangeForReader Behavior

The CSTChangeForReader keeps track of the communication state (attribute cS) and relevance
(attribute relevant) of each CSChange with respect to a specific remote CSTReader.

This relevant boolean is set to TRUE when the CSChangeForReader is created; it can be set to FALSE
when the CSChange has become irrelevant for the remote Reader because of later CSChanges. This
can happen, for example, when an attribute of a NetworkObject changes several times: in that case a
later CSChange can make a previous CSChange irrelevant because a Reader is only interested in the
latest attributes of the NetworkObject. It is the responsibility of the CSTRemoteReader to use this
argument correctly so that the CSTReader can reconstruct the correct CS from the relevant
CSChanges it receives.

Figure 7.2 shows the Finite State Machine representing the state of the attribute cS of the CSChange-
ForReader.

The states have the following meanings:

<New> a CSChange with SequenceNumber sn is available in the CSTWriter but this has not been
announced or sent to the CSTReader yet.

<Announced> the existence of this SequenceNumber has been announced.

<ToSend> it is time to send either a VAR or GAP with this sn to the CSTReader.

<Underway> the CSChange has been sent but the Writer will ignore new requests for this
CSChange.

Figure 7.2 State of Attribute cS for CSChangeForReader
7-3

Chapter 7 CST Protocol
<Unacknowledged> the CSChange should have been received by the CSTReader, but this has not
been acknowledged by the CSTReader. As the message could have been lost, the CSTReader
can request the CSChange to be sent again.

<Acknowledged> the CSTWriter knows that the CSTReader has received the CSChange with
SequenceNumber sn.

The following describes the main events in this Finite State Machine. Note that this FSM just keeps
track of the state of the CSChangeForReader; it does not imply any specific actions:

SENT_HB(sn) : The CSTWriter has sent a HEARTBEAT with firstSeqNumber <= sn <= lastSe-
qNumber; which means that the CSChange has been announced to the CSTReader.

RECV_NACK(sn) : The CSTWriter has received an ACK where sn is inside the bitmap of the ACK
and has a bitvalue of 0.

SENT_VAR(sn) : The CSTWriter has sent a VAR for sn. The CSTReader will use the received VAR to
adjust its local copy of the CS.

SENT_GAP(sn) : The CSTWriter has sent a GAP where sn is in the GAP’s gapList, which means that
the sn is irrelevant to the CSTReader.

RECV_ACK(sn) : The CSTWriter has received an ACK with bitmap.bitmapBase > sn. This means
the CSChange with SequenceNumber sn has been received by the CSTReader.

PUSH(sn) : A CSTWriter can push out CSChanges that have not been requested explicitly by the
reader, by moving them directly from the state <New> to the state <ToSend>.

7.3.4 CSTRemoteReader Behavior

Each CSTRemoteReader has a communication state cS, which represents the current behavior of the
CSTWriter with respect to one remote CSTReader. The behavior of the CSTReader is partly influ-
enced by the attribute fullAcknowledge.

The following is an overview of the most important abbreviations used in Figure 7.3 to represent
events:

RECV_ACKf : an ACK was received from the CSTReader with FINAL-bit==FALSE.

SENT_HB : a HB was sent to the CSTReader

^VAR : this is an action: send a VAR submessage

^HB : this is an action: send a HB submessage

^GAP : this is an action: send a GAP submessage

The overall behavior of the CSTRemoteReader is modelled by two concurrent FSMs.

The bottom FSM deals with sending data: GAPs or VARs. Whenever there are CSChanges in state
<ToSend>, the CSTRemoteReader is in state <MustSendData>. In this state, the CSTWriter will
send VARs for relevant CSChanges and will include the irrelevant CSChanges in the gapList of a
GAP. Section 7.5.3 and Section 7.5.4 show the contents of the VAR and GAP.

The most efficient CSTWriter will send the VARs consecutively and in order (lowest sequence-num-
bers first) to facilitate the reconstruction of the CS by the CSTReader, but this is not a requirement.
Likewise, the CSTReader will deal more efficiently with the CSTWriter that sends a GAP before
VAR if there is a gap in the sequence numbers of the VAR, since the CSTReader then knows that
sequence number is irrelevant. A possible sequence of submessages might be: GAP(1->100)
VAR(101) VAR(102) GAP(103,105) VAR(104) VAR(106).

The top FSM shows the heartbeating behavior of a CSTWriter. In case an ACK without FINAL-bit is
received, the CSTWriter must send a heartbeat within the delayResponseTime. In addition, a CST-
Writer must regularly announce itself by sending a heartbeat. In case the CST protocol is in “fullAc-
knowledge” mode, the heartbeating only is necessary when there are unacknowledged CSChanges.
7-4

7.3 CSTWriter
7.3.5 Timing Parameters on the CSTWriter side

The behavior is determined by the following timing parameters:

CSTWriter::waitWhileDataUnderwayTime: The CSTWriter is allowed to ignore NACKs for data
that it considers to be underway to the CSTReader. The size of this window is the “waitWhileDa-
taUnderwayTime”. The window could be the CSTWriter’s estimate of the time it takes a message (a
VAR or GAP) to be sent by the CSTWriter to the CSTReader, plus the time it takes for the
CSTReader to process the message and immediately send a response (an ACK) to the CSTWriter,
plus the time it takes the CSTWriter to receive and process this ACK. A larger waitWhileDataUnder-
wayTime will cause the CST protocol to slow down and be less aggressive; a lower time might cause
data to be sent unnecessarily. waitWhileDataUnderwayTime can be 0 seconds.

CSTWriter::repeatAnnouncePeriod: This is the period with which the CSTWriter will announce its
existence and/or the availability of new CSChanges to the CSTReader. This period determines how
quickly the protocol recovers when an announcement of data is lost. CSTWriter::repeatAnnounceP-
eriod cannot be 0 nor INFINITY for the protocol to function correctly.

CSTWriter::responseDelayTime: This is the time the CSTWriter waits before responding to an
incoming message. Higher values allow the CSTWriter to combine more information in one Mes-
sage or to service many concurrent CSTReaders more efficiently. CSTWriter::delayResponseTime
can be 0 seconds.

Figure 7.3 CSTRemoteReader
7-5

Chapter 7 CST Protocol
7.4 CSTReader

7.4.1 Overview

The following sections describe the behavior of the CSTWriter, the CSTChangeForReader and the
CSTRemoteReader. The CSTReader receives CSChangeFromWriters from the CSTWriter. In case a
VAR was received for the CSChangeFromWriters, the CSTReader will store the contents of the
VAR in an associated CSChange. The CSTReader should be able to reconstruct the current CS of a
specific CSTWriter by interpreting all consecutive CSChanges.

In the current version of the protocol, the CSTReader should reconstruct the CS for each CSTRem-
oteWriter. Future versions of the protocol will specify the correct interpretation in the case that sev-
eral CSTRemoteWriters provide information on the same NetworkObject.

7.4.2 CSTReader Behavior

As in the case of the CSTWriter, the CSTReader maintains a state CSTRemoteWriterCommState cS
per CSTRemoteWriter, as well as a state CSChangeFromWriterCommState cS for most CSChanges
(since there may be a CSChangeFromWriter that has no corresponding CSChange, for example, a
GAP message).
7-6

7.4 CSTReader
7.4.3 CSChangeFromWriter Behavior

Here is the meaning of the abbreviated events in this FSM:

RECV_HB(sn) : the CSTReader received a HEARTBEAT with firstSeqNumber <= sn <= lastSe-
qNumber

SENT_NACK(sn) : the CSTReader sent an ACK with sn inside the bitmap-range and with bit-value
0

RECV_GAP(sn) : the CSTReader received a GAP with sn in the gapList

RECV_VAR(sn) : the CSTReader received a VAR for sequenceNumber sn

The four states have the following meaning:

<Future> : A CSChange with SequenceNumber sn may not be used yet by the CSTWriter

<Missing>: The sn is available in the CSTWriter and is needed to reconstruct the CS.

<Requested>: The sn was requested from the CSTWriter, a response might be pending or underway

<Received> : The sn was received: as a VAR if the sn is relevant to reconstruct the CS or as a GAP if
the sn is irrelevant.

7.4.4 CSTRemoteWriter Behavior
The abbreviations used for events are as follows:

RECV_HBf : received a HEARTBEAT from the CSTWriter with FINAL-bit==FALSE

The abbreviations used for the actions are as follows:

^ACK : send an ACK to the CSTWriter
7-7

Chapter 7 CST Protocol
In these ACKs, the ACK.bitmap.bitmapBase always is the lowest sequenceNumber whose corre-
sponding CSChangeFromReader is not in state <Received>. This can be 0
(SEQUENCE_NUMBER_NONE). The CSTReader can choose the length of the bitmap as this will
determine how much CSChanges move to <ToSend> state on the CSTWriter side and how much
information the CTSReader will receive from the CSTWriter. The bitmap can only contain “0”’s
when the corresponding CSChangeFromReaders are in state <Missing> (or <Future>). See
Section 7.5.1 for a description of the further fields in these ACKs.

The CSTRemoteWriter must send an ACK in two cases:

1. First, when a HEARTBEAT with the FINAL-bit==FALSE (“RECV_HBf”) is received, the
CSTReader must respond with an ACK that has the FINAL-bit==TRUE. The CSTReader can delay
its response.

2. Second, when the CSTReader has evidence of Missing data, it needs to request the data by sending
the appropriate ACK.

7.4.5 Timing Parameters on the CSTReader side

The timing parameters of the CSTReader are:

CSTReader::responseDelayTime: how long the CSTReader waits before sending a response to a
HEARTBEAT to the CSTWriter.

7.5 Overview of Messages used by CST
This section gives an overview of the contents of the Messages that a CSTReader and CSTWriter
exchange and the contents of the various fields of the Messages.

The submessages may need to be preceded by other messages that modify the context (see Section
3.3).

7.5.1 ACKs—Sent from a CSTReader to a CSTWriter

The only logical SubMessage that a CSTReader reader sends to a CSTWriter writer are ACKs. As
shown in the table above, in this version of the protocol, the replyIPAddressPortList must be set explic-
itly to all the destinations of the reader.
7-8

7.5 Overview of Messages used by CST
7.5.2 HEARTBEATs—Sent from a CSTWriter to a CSTReader

The HEARTBEATs sent by the CSTWriter writer to the CSTReader reader always have the contents
listed in this table.

7.5.3 GAPs—Sent from a CSTWriter to a CSTReader

The contents of the GAPs sent by the CSTWriter writer to the CSTReader reader is shown in the table.
The contents of the gapList is described in the detailed description of the behavior of the CSTRemo-
teReader.

7.5.4 VARs—Sent from a CSTWriter to a CSTReader

A VAR encodes the contents of a specific CSChange cSChange and is sent from the CSTWriter writer
to the CSTReader reader.

Field Value in the CST protocol

FINAL-bit see description of the behavior of the CSTRemoteWriter

readerGUID reader.GUID

writerGUID writer.GUID

replyIPAddressPortList required: must explicitly contain all destinations of the reader
(reader.IPAddressPortList())

bitmap see description of the behavior of the CSTRemoteWriter

Field Value in the CST protocol

FINAL-bit see description of the behavior of the CSTRemoteReader

readerGUID reader.GUID

writerGUID writer.GUID

ACKIPAddressPortList optional destinations of the writer

firstSeqNumber writer.firstSeqNumber

lastSeqNumber writer.lastSeqNumber

Field Value in the CST protocol

readerGUID reader.GUID

writerGUID writer.GUID

ACKIPAddressPortList optional; additional destinations of the writer

gapList see description of the behavior of the CSTRemoteReader

Field Value in the CST protocol

readerGUID reader.GUID

writerGUID writer.GUID

objectGUID cSChange.GUID

writerSeqNumber cSChange.sn

(timestamp) optional timestamp

(parameters) cSChange.attributes (iff cSChange.alive==TRUE)
7-9

Chapter 7 CST Protocol
ALIVE-bit csChange.alive

ACKIPAddressPortList optional; additional destinations of the writer

Field Value in the CST protocol
7-10

8.1 Overview
Chapter 8

Discovery with the CST Protocol

RTPS defines mechanisms that allow every Application to automatically discover other relevant
Applications and their Services in the Network. These mechanisms use the CST Protocol that is
described in the previous chapter.

8.1 Overview
The Manager that manages a ManagedApplication is called the Application’s MOM (My Own
Manager). The other Managers in the Network are the Application’s OAMs (Other Applications’
Manager).

Figure 8.1 provides an overview of the protocols used for the discovery:

❏ The Inter-Manager Protocol allows Managers to discover each other in the Network. This
protocol is described in Section 8.3.

❏ The Manager-Discovery Protocol allows every ManagedApplication to discover other Man-
agers in the Network: the ManagedApplication receives this information from its MOM.
This protocol is described in Section 8.5.

❏ The Registration Protocol allows Managers to find their managees and obtain their manag-
ees’ state. This protocol is described in Section 8.4.

❏ The Application-Discovery Protocol allows every ManagedApplication to discover other
ManagedApplications on the Network. This protocol is described in Section 8.6.

❏ The Services-Discovery Protocol allows every ManagedApplication to find out about the
Services (the Publications and Subscriptions) in the other ManagedApplications on the
Network. This protocol is described in Section 8.7.

The discovery protocol uses reserved objects described in Section 5.4

Application1

Manager
(has Application 1 as managee)

Registration
Protocol

Application2

Manager for
Application2

Inter-Manager

Manager-Discovery Protocol
Application-Discovery Protocol
(MOM)

Application-Discovery
Protocol (OAM)

Figure 8.1 Relationship between Applications and Managers

Protocol

Services
8-1

Chapter 8 Discovery with the CST Protocol
8.2 Managers Keep Track of Their Managees
Every Manager keeps track of its managees and their attributes. To provide this information on the
Network, every Manager has a special CSTWriter writerApplications.

The Composite State that the CSTWriter writerApplications provides are the attributes of all the Man-
agedApplications that the Manager manages (its managees).

8.3 Inter-Manager Protocol

Every Manager has a special CSTWriter writerApplicationSelf through which the Manager makes its
own state available on the Network. The CS of the writerApplicationSelf contains the attributes of
only one NetworkObject: the Manager itself.

The attribute vargAppsSequenceNumberLast of the Manager is equal to the lastModificationSeqNumber
of the CSTWriter writerApplications. Whenever the Manager accepts a new ManagedApplication as
its managee, whenever the Manager loses a ManagedApplication as a managee or whenever an
attribute of a managee changes, the CS of the writerApplications changes and the Manager’s
vargAppsSequenceNumberLast is updated.

Formally: for every Manager manager : manager.vargAppsSequenceNumberLast = manager.writer-
Applications.lastModificationSeqNumber.

Every Manager has the special CSTReader readerManagers through which the Manager obtains
information on the state of all other Managers on the Network.

The communication between the Manager::writerApplicationSelf and Manager::readerManagers
uses the CST Protocol that was described in the previous section, with a specific configuration.

The Manager::writerApplicationSelf needs to be configured with the destinations (IP-addresses) of
the Manager::readerManagers on the Network. This configuration is necessary to bootstrap the
plug-and-play mechanism of RTPS. In case multicast is used, one single multicast address is suffi-
cient: this is the multicast-address the Managers will then use to discover each other on the Net-
work.

To support the automatic dynamic discovery and aging of Managers, the Manager::writerApplica-
tionSelf must announce its presence repeatedly: the value of the repeatAnnouncePeriod timing-
parameter of the Manager’s writerApplicationSelf must be small relative to the expirationTime of
the Manager.

Similarly, the readerManagers CSTReader will only consider the remote Manager alive within the
expirationTime of the Manager. If no Message is received from the Manager’s writerApplicationSelf
during the expirationTime, the remote Manager must be considered dead; the CSTReader should
behave as if it received a CSChange with the ALIVE-bit set to FALSE.
8-2

8.4 The Registration Protocol
Because the CST Protocol for the inter-management traffic relies on repetitive messages, the fullAc-
knowledge attribute of the CSTReader and CSTWriter must be FALSE.

Here is a summary of the inter-manager protocol:

Initial Condition: New Managers know how to reach other potential managers on the Network.

Protocol: CST Protocol between Manager::writerApplicationSelf and Manager::readerManagers with
repetition (repeatAnnouncePeriod of the writerApplicationSelf must be sufficiently high) and no
acknowledgements (fullAcknowledge == FALSE).

Final Condition: Every Manager has the state of all other Managers on the Network. Repeated
keep-alive HEARTBEATING is needed.

8.4 The Registration Protocol
The registration protocol enables managees to discover their Managers in the Network.

Initial Condition: The ManagedApplication is configured with a way to contact the readerApplica-
tions of its potential Managers (this configuration can be one single multicast address that will be
used for the discovery of managers by applications). In addition, the ManagedApplication and
Manager are configured with a managerKeyList which makes it possible for Applications and Man-
agers to decide which Managers will manage which Applications.

Final Condition: Every Manager knows all its Managees and their attributes.

Protocol: CST Protocol (with sufficient repeatAnnouncePeriod and fullAcknowledge==FALSE)
between the ManagedApplication’s writerApplicationSelf and the Manager’s readerApplications.

The ManagedApplication has a special CSTWriter writerApplicationSelf. The Composite State of the
ManagedApplication::writerApplicationSelf contains only one NetworkObject: the application
itself. As is the case for the writerApplicationSelf of the Manager, the writerApplicationSelf of the Man-
agedApplication must be configured to announce its presence repeatedly (the repeatAnnouncePe-
riod of that writer must be smaller than expirationTime of the ManagedApplication) and does not
request nor expect acknowledgements (fullAcknowledge==FALSE).

A Manager that discovers a new ManagedApplication through its readerApplications must decide
whether it must manage this ManagedApplication (become its MOM) or not (stay an OAM). For this
purpose, the attribute managerKeyList of the Application is used: if one of the ManagedApplication’s
keys (in the attribute managerKeyList) is equal to one of the Manager’s keys, the Manager accepts the
Application as a managee and becomes its MOM. If none of the keys are equal, the managed applica-
tion is ignored: the Manager will not manage this Application and stay an OAM for the Application.
The managerKey 0x7F000001 (IP loopback) has a special meaning: the Manager will accept the Man-
agedApplication with key 0x7F000001 as a managee when that ManagedApplication runs on the
same host as the Manager.

The application state in the Manager is only temporary. This approach is completely similar to the
repeatAnnouncePeriod mechanism of Managers described in Section 8.3. The duration of the lease is
based on the value of the ManagedApplication’s expirationTime. The repeatAnnouncePeriod of the
8-3

Chapter 8 Discovery with the CST Protocol
writerApplicationSelf must be small enough so that the Manager receives regular messages from the
ManagedApplication. If the Manager has not received a Message from the ManagedApplication
during the expirationTime of that ManagedApplication, it considers the ManagedApplication dead
and behaves as if a CSChange has been received declaring the Application dead.

8.5 The Manager-Discovery Protocol
With the Manager-Discovery protocol, a Manager will send the state of all Managers in the Network
to all its managees.

Initial Condition: Every Manager has obtained the state of other Managers (using the inter-man-
ager protocol) and knows its managees.

Protocol: CST Protocol between Manager::writerManagers and ManagedApplication::readerMan-
agers.

Final Condition: Every managee of every Manager has the state of all Managers on the Network.

8.6 The Application Discovery Protocol
Initial Condition: The Managers have discovered their managees and the ManagedApplications
know all Managers in the Network (they got this information from their MOMs).

Protocol: The CST Protocol is used between the writerApplications of the Managers and the reader-
Applications of the ManagedApplications.

Final Condition: The ManagedApplications have discovered the other ManagedApplications in
the Network.
8-4

8.7 Services Discovery Protocol
8.7 Services Discovery Protocol
This section describes how the ManagedApplications transfer information to each other about their
local Services.

As mentioned previously, every ManagedApplication has two special CSTWriters, writerPublica-
tions and writerSubscriptions, and two special CSTReaders, readerPublications and readerSubscriptions.

The Composite State that the CSTWriters make available on the Network are the attributes of all the
local Publication and Subscriptions. The CSTWriter writerPublications/Subscriptions needs to instan-
tiate a local CSTRemoteReader for each remote ManagedApplication on the Network.

Similarly, the CSTReaders writerPublication/Subscription need to instantiate a CSTRemoteWriter for
each remote ManagedApplication on the Network.

Once ManagedApplications have discover each other, they use the standard CST protocol through
these special CSTReaders and CSTWriter to transfer the attributes of all Publications and Subscrip-
tions in the Network.

Because all CSTRemoteReaders and CSTRemoteWriters for Service-discovery are known (as a
result of Application-Discovery), the CST Protocol must support the acknowledgement of received
issues (fullAcknowledge==TRUE) and repeated heartbeating should be turned off (repeatAnnounce-
Period==INFINITE).

Initial Condition: The ManagedApplications have discovered each other on the Network

Protocol: CST Protocol from writerPublications to readerPublications and from writerSubscriptions to
readerSubscriptions (repeatAnnouncePeriod==INFINITE and fullAcknowledge==TRUE)

Final Condition: The ManagedApplications know about each others Services.
8-5

Chapter 8 Discovery with the CST Protocol
8-6

A.1 Primitive Types
Appendix A

CDR for RTPS

The following is a summary of the CDR data format and the OMG IDL syntax to the extent that they
are used by the RTPS protocol and its description in this document.

The authoritative source of the CDR specification and OMG IDL is the CORBA protocol (available
through the Object Management Group). In the CORBA V2.3.1 spec, the relevant sections are 15.3
(General Inter-ORB Protocol—CDR Transfer Syntax) and 3.10 (OMG IDL Syntax and Semantics—
Type Declaration). Unless mentioned explicitly, CDR for RTPS follows the CDR standard for GIOP
version 1.1.

RTPS makes some additional restrictions on CDR and makes concrete choices where CDR for GIOP
1.1 is not fully defined. Notable are the implementation of the wide characters and strings (wchar
and wstring) and the definition of the RTPSIdentifier, which only allows certain characters.

A.1 Primitive Types

A.1.1 Semantics

OMG IDL-name size meaning
octet 1 8 uninterpreted bits
boolean 1 TRUE or FALSE
unsigned short 2 integer N, 0 <= N < 2^16
short 2 integer N, -2^15 <= N < 2^15
unsigned long 4 integer N, 0 <= N < 2^32
long 4 integer N, -2^31 <= N < 2^31
unsigned long long 8 integer N, 0 <= N < 2^64
long long 8 integer N, -2^63 <= N < 2^63
float 4 IEEE single-precision fp number
double 8 IEEE double-precision fp number
char 1 a character following ISO8859-1
wchar 2 a wide-character following UNICODE

Remarks:

❏ CDR defines some additional primitive types, such as "long double"; these are currently disal-
lowed by RTPS.

❏ CDR leaves the width of the wchar open; RTPS gives it a fixed length of two bytes.

A.1.2 Encoding

CDR has both a big-endian ("BE") and a little-endian ("LE") encoding. The sender is allowed to
choose the encoding. The receiver needs to know which encoding has been used by the sender to
unpack the data correctly. This endianness-bit is transmitted as part of the RTPS protocol.
A-1

Appendix A CDR for RTPS
A.1.3 octet

BE/LE
0...2...........7
+-+-+-+-+-+-+-+-+
|7|6|5|4|3|2|1|0|
+-+-+-+-+-+-+-+-+

A.1.4 boolean

TRUE BE/LE
0...2...........7
+-+-+-+-+-+-+-+-+
|0|0|0|0|0|0|0|1|
+-+-+-+-+-+-+-+-+

FALSE BE/LE
0...2...........7
+-+-+-+-+-+-+-+-+
|0|0|0|0|0|0|0|0|
+-+-+-+-+-+-+-+-+

A.1.5 unsigned short

BE
0...2...........7...............15
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|MSB | LSB|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
LE
0...2...........7...............15
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LSB|MSB |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

A.1.6 short

A short has the same encoding as an unsigned short, but uses 2's complement representation.

A.1.7 unsigned long

BE
0...2...........7...............15..............23..............31
+-+
|MSB |MSB X |MSB Y | LSB|
+-+

LE
0...2...........7...............15.............23...............31
+-+
| LSB|MSB Y |MSB X |MSB |
+-+

A.1.8 long

A long has the same encoding as an unsigned long, but uses 2's complement representation.
A-2

A.1 Primitive Types
A.1.9 unsigned long long

BE
0...2...........7...............15.............23...............31
+-+
|MSB |MSB A |MSB B |MSB C |
+-+
|MSB D |MSB E |MSB F | LSB|
+-+

LE
0...2...........7...............15.............23...............31
+-+
| LSB|MSB F |MSB E |MSB D |
+-+
|MSB C |MSB B |MSB A |MSB |
+-+

A.1.10 long long

A long long has the same encoding as an unsigned long long, but uses 2's complement representa-
tion.

A.1.11 float

BE
....2...........8...............16.............24...............32
+-+
|S| E1 |E| F1 | F2 | F3 |
+-+

LE
....2...........8...............16.............24...............32
+-+
| F3 | F2 |E| F1 |S| E1 |
+-+

A.1.12 double

BE
....2...........8...............16.............24...............32
+-+
|S| E1 | E2 | F1 | F2 | F3 |
+-+
| F4 | F5 | F6 | F7 |
+-+

LE
....2...........8...............16.............24...............32
+-+
| F7 | F6 | F5 | F4 |
+-+
| F3 | F2 | E2 | F1 |S| E1 |
+-+

A.1.13 char

A character has the same encoding as an octet.

A.1.14 wchar

A wide-character occupies two octets and follows UNICODE encoding.
A-3

Appendix A CDR for RTPS
A.2 Constructed Types

A.2.1 Alignment

In CDR, only the primitive types listed in Section A.1 have alignment constraints. The primitive
types need to be aligned on their length. For example, a long must start on a 4-byte boundary. The
boundaries are counted from the start of the CDR stream.

A.2.2 Identifiers

An identifier is a sequence of ASCII alphabetic, numeric and underscore characters. The first charac-
ter must be an ASCII alphabetic character.

A.2.3 List of constructed types

RTPS supports the following subset of CDR constructed types:

struct structure

array fixed size array (the length is part of the type)

sequence variable size array (the maximum length is part of the type)

enum enumeration

string string of 1-byte characters

wstring string of wide characters

Note: there are some additional constructed types in CDR, such as unions and fixed-point decimal
types; these are currently not supported in RTPS.

A.2.4 Struct

A structure has a name (an identifier) and an ordered sequence of elements. Each element has a
name (an identifier) and a type. In OMG IDL, a structure is defined by the keyword "struct", fol-
lowed by an identifier and a sequence of the elements of the structure. An example of the definition
of a structure named "myStructure" in OMG IDL is:

struct myStructure {
 long long l;
 unsigned short s;
 myType t;
}

In CDR, the components of such a structure are encoded in the order of their declaration in the struc-
ture. The only alignment requirements are at the level of the primitive types.

A.2.5 Enumeration

An enumeration has a name (an identifier) and an ordered set of case-keywords which also are iden-
tifiers. In OMG IDL, an enumeration is defined by the keyword "enum", followed by an identifier
and a list of identifiers in the enumeration. For example:

enum myEnumeration { case1, case2, case3 }

In CDR, enumerations are encoded as unsigned longs, where the identifiers in the enumeration are
numbered from left to right, starting with 0.
A-4

A.2 Constructed Types
A.2.6 Sequence

A sequence is a variable number of elements of the same type. Optionally, the type can specify the
maximum number of elements in the sequence. OMG IDL uses the keyword "sequence". The syntax
for an unbounded sequence of floats is:

sequence<float>

The syntax for a sequence of unsigned long longs with a maximum length is:

sequence<unsigned long long, MAX_NUMBER_OF_ELEMENTS>

In CDR, sequences are encoded as the number of elements (as an unsigned long) followed by each of
the elements in the sequence.

A.2.7 Array

Arrays have a fixed and well-known number of elements of the same type. In OMG IDL, an array is
defined using the symbols "[" and "]", following the C/C++ style. An example is:

float[17]

In CDR, arrays are encoded by encoding each of its elements from low to high index. In multi-dimen-
sional arrays, the index of the last dimension varies most quickly.

A.2.8 String

A string is an optionally bounded sequence of characters. In OMG IDL, a string of unbounded length
is identified by the keyword "string"; a bounded string is specified as follows:

string<MAX_LENGTH>

MAX_LENGTH is the maximum number of actual characters in the string (not including a possible
terminating zero). For example: the string "Hello" can be stored in a variable of type string<5>.

On the wire, strings are encoded as an unsigned long (indicating the number of octets that follow to
encode the string), followed by each of the characters in the string and a terminating zero. For exam-
ple, the string "Hello" is encoded as the unsigned long 6 followed by the octets ’H’, ’e’, ’l’, ’l’, ’o’, 0.

A.2.9 Wstring

A wide-string is a string of wide-characters. In OMG IDL, unbounded and bounded strings are spec-
ified, respectively, as follows:

wstring
wstring<MAX_LENGTH>

In CDR (GIOP 1.1), a wide-string is encoded as an unsigned long indicating the length of the string
on octets or unsigned integers (determined by the transfer syntax for wchar), followed by the indi-
vidual wide characters. Both the string length and contents include a terminating NULL.
A-5

Appendix A CDR for RTPS
A-6

	Figures
	Tables
	Basic Concepts
	1.1 Introduction
	1.2 The RTPS Object Model
	1.3 The Basic RTPS Transport Interface
	1.3.1 The Basic Logical Messages
	1.3.2 Underlying Wire Representation

	1.4 Notational Conventions
	1.4.1 Name Space
	1.4.2 Representation of Structures
	1.4.3 Representation of Bits and Bytes

	Structure Definitions
	2.1 Referring to Objects: the GUID
	2.1.1 The GUIDs of Applications
	2.1.2 The GUIDs of the Services within an Application

	2.2 Building Blocks of RTPS Messages
	2.2.1 VendorId
	2.2.2 ProtocolVersion
	2.2.3 SequenceNumber
	2.2.4 Bitmap
	2.2.5 NtpTime
	2.2.6 IPAddress
	2.2.7 Port

	RTPS Message Format
	3.1 Overall Structure of RTPS Messages
	3.2 Submessage Structure
	3.2.1 submessageId in the Submessage Header
	3.2.2 Flags in the Submessage Header
	3.2.3 octetsToNextHeader in the Submessage Header

	3.3 How to Interpret a Message
	3.3.1 Rules Followed By A Message Receiver

	3.4 Header
	3.4.1 Format
	3.4.2 Validity
	3.4.3 Change in State of the Receiver
	3.4.4 Logical Interpretation

	3.5 ACK
	3.5.1 Submessage Format
	3.5.2 Validity
	3.5.3 Change in State of the Receiver
	3.5.4 Logical Interpretation

	3.6 GAP
	3.6.1 Submessage Format
	3.6.2 Validity
	3.6.3 Change in State of the Receiver
	3.6.4 Logical Interpretation
	3.6.5 Example

	3.7 HEARTBEAT
	3.7.1 Submessage Format
	3.7.2 Validity
	3.7.3 Change in State of the Receiver
	3.7.4 Logical Interpretation

	3.8 INFO_DST
	3.8.1 Submessage Format
	3.8.2 Validity
	3.8.3 Change In State Of The Interpreter
	3.8.4 Logical Interpretation

	3.9 INFO_REPLY
	3.9.1 Submessage Format
	3.9.2 Validity
	3.9.3 Change in State of the Receiver
	3.9.4 Logical Interpretation

	3.10 INFO_SRC
	3.10.1 Submessage Format
	3.10.2 Validity
	3.10.3 Change in State of the Receiver
	3.10.4 Logical Interpretation

	3.11 INFO_TS
	3.11.1 Submessage Format
	3.11.2 Validity
	3.11.3 Change in State of the Receiver
	3.11.4 Logical Interpretation

	3.12 ISSUE
	3.12.1 Submessage Format
	3.12.2 Validity
	3.12.3 Change in State of the Receiver
	3.12.4 Logical Interpretation

	3.13 PAD
	3.13.1 Submessage Format
	3.13.2 Validity
	3.13.3 Change in State of the Receiver
	3.13.4 Logical Submessage Generated On Reception

	3.14 VAR
	3.14.1 Submessage Format
	3.14.2 Validity
	3.14.3 Change in State of the Receiver
	3.14.4 Logical interpretation

	3.15 Versioning and Extensibility
	3.15.1 Allowed Extensions Within This Major Version
	3.15.2 What Cannot Change Within This Major Version

	RTPS and UDP/IPv4
	4.1 Concepts
	4.1.1 RTPS Messages and the UDP Payload
	4.1.2 UDP/IP Destinations
	4.1.3 Note On Relative Addresses

	4.2 RTPS Packet Addressing
	4.2.1 Well-known Ports
	4.2.2 Relevant Attributes of an Application
	4.2.3 Manager
	4.2.4 Definition of the IPAddressPortList()

	4.3 Possible Destinations for Specific Submessages
	4.3.1 Possible Destinations of an ACK
	4.3.2 Possible Destinations of a GAP
	4.3.3 Possible Destinations of a HEARTBEAT
	4.3.4 Possible Destinations of an ISSUE
	4.3.5 Possible Destinations of a VAR

	Attributes of Objects and Metatraffic
	5.1 Concept
	5.2 Wire Format of the ParameterSequence
	5.3 ParameterID Definitions
	5.4 Reserved Objects
	5.4.1 Description
	5.4.2 Overview: Special Objects in a ManagedApplication
	5.4.3 Overview: Special Objects in a Manager
	5.4.4 Reserved ObjectIds

	5.5 Examples
	5.5.1 Examples of GUIDs
	5.5.2 Examples of ParameterSequences

	Publish-Subscribe Protocol
	6.1 Publication and Subscription Objects
	6.1.1 Object Model
	6.1.1.1 Topic And Type Properties
	6.1.1.2 Subscription Properties: minimumSeparation
	6.1.1.3 Publication Properties: strength, persistence
	6.1.1.4 Reliability
	6.1.1.5 Deployment

	6.1.2 Publication Behavior Towards Best-Effort Subscriptions
	6.1.2.1 Contents of the Publication Message
	6.1.2.2 When to Send an Issue
	6.1.2.3 Best-Effort Subscriptions

	6.1.3 Publication Behavior Towards Strict-Reliable Subscriptions
	6.1.3.1 When to Send an Issue
	6.1.3.2 When to Send a HEARTBEAT
	6.1.3.3 Strict-Reliable Subscriptions
	6.1.3.4 When to Send an ACK
	6.1.3.5 Contents of the ACK Message
	6.1.3.6 Contents of the HEARTBEAT Message

	6.2 Representation of User Data
	6.2.1 Format of Data in UserData
	6.2.2 TypeName
	6.2.3 TypeChecksum
	6.2.4 PathName

	CST Protocol
	7.1 Object Model
	7.2 Structure of the Composite State (CS)
	7.3 CSTWriter
	7.3.1 Overview
	7.3.2 CSTWriter Behavior
	7.3.3 CSChangeForReader Behavior
	7.3.4 CSTRemoteReader Behavior
	7.3.5 Timing Parameters on the CSTWriter side

	7.4 CSTReader
	7.4.1 Overview
	7.4.2 CSTReader Behavior
	7.4.3 CSChangeFromWriter Behavior
	7.4.4 CSTRemoteWriter Behavior
	7.4.5 Timing Parameters on the CSTReader side

	7.5 Overview of Messages used by CST
	7.5.1 ACKs—Sent from a CSTReader to a CSTWriter
	7.5.2 HEARTBEATs—Sent from a CSTWriter to a CSTReader
	7.5.3 GAPs—Sent from a CSTWriter to a CSTReader
	7.5.4 VARs—Sent from a CSTWriter to a CSTReader

	Discovery with the CST Protocol
	8.1 Overview
	8.2 Managers Keep Track of Their Managees
	8.3 Inter-Manager Protocol
	8.4 The Registration Protocol
	8.5 The Manager-Discovery Protocol
	8.6 The Application Discovery Protocol
	8.7 Services Discovery Protocol

	CDR for RTPS
	A.1 Primitive Types
	A.1.1 Semantics
	A.1.2 Encoding
	A.1.3 octet
	A.1.4 boolean
	A.1.5 unsigned short
	A.1.6 short
	A.1.7 unsigned long
	A.1.8 long
	A.1.9 unsigned long long
	A.1.10 long long
	A.1.11 float
	A.1.12 double
	A.1.13 char
	A.1.14 wchar

	A.2 Constructed Types
	A.2.1 Alignment
	A.2.2 Identifiers
	A.2.3 List of constructed types
	A.2.4 Struct
	A.2.5 Enumeration
	A.2.6 Sequence
	A.2.7 Array
	A.2.8 String
	A.2.9 Wstring

